Meningkatkan Kuat Tekan Beton Fc’ 16,60 Mpa menggunakan Fly Ash dan Arang Batok Kelapa

Authors

  • Yusril Iza Mahendra Faculty of Engineering, Kadiri University
  • Edy Gardjito Faculty of Engineering, Kadiri University
  • Ahmad Ridwan Faculty of Engineering, Kadiri University
  • Haris Wicaksono Faculty of Engineering, Kadiri University

DOI:

https://doi.org/10.30737/jurmateks.v4i1.1641

Keywords:

Coconut Shell Charcoal, Compressive Strength, Concrete, Fly Ash

Abstract

The science of concrete in the present era has developed. Research on efforts to improve the properties and performance of concrete has been carried out a lot. One of them is modifying a concrete mixture with fly ash as a substitute for some cement and coconut shell charcoal as a substitute for some sand. The chemical properties contained in fly ash are 80% in the form of silica and alumina. The purpose of this study was to determine the slump value and the compressive strength value of the test object added with fly ash with variations of 3%, 6%, 9% of the weight of cement, and 3% baroque coconut charcoal by weight of sand. This research method is experimental, which refers to the Indonesian National Standard with a test object cylinder size 15x30 cm totaling 12 samples tested at the age of 28 days with a quality plan fc'16.60 Mpa. The results showed that the highest slump value was obtained in the test object variation 3, namely 7 cm, while the average compressive strength of each variation has exceeded the quality of the plan with the highest value obtained in variation 2 with a compressive strength value of Fc'24.9 Mpa.
 

References

S. Muwardin, D. L. C. Galuh, and I. Yasin, “Pengaruh Arang Tempurung Kelapa Terhadap Kuat Tekan Beton Dengan Perendaman Air Laut , Air Tawar , Air Sungai Dan Air Kapur,†pp. 52–60.

M. Abdul, B. Minanulloh, Y. C. S. P, and A. Ridwan, “Pengaruh Penambahan Abu Cangkang Kemiri Terhadap Kuat Tekan Beton K – 300,†J. Manaj. Teknol. Tek. Sipil, vol. 3, no. 1, pp. 12–22, 2020.

O. Febrianita, A. Ridwan, and Y. C. S. Poernomo, “Penelitian Beton dengan Penambahan Abu Sekam Padi dan Limbah Keramik sebagai Substitusi Semen,†J. Manaj. Teknol. Tek. Sipil, vol. 3, no. 2, p. 275, 2020, doi: 10.30737/jurmateks.v3i2.1138.

N. Affandy and Z. Lubis, “Pengaruh Penambahan Serat Alami Eceng Gondok Terhadap Kuat Tekan Beton Berkualitas Rendah,†UKaRsT, vol. 2, no. 1, p. 10, 2018, doi: 10.30737/ukarst.v2i1.262.

H. Pratikto, “Penelitian Kuat Uji Tekan Beton Dengan Memanfaatkan Limbah Beton Yang Tidak Terpakai,†UKaRsT, vol. 1, no. 2, p. 21, 2017, doi: 10.30737/ukarst.v1i2.411.

S. Kholishoh, “Pengaruh Perbedaan Sumber Fly Ash Terhadap Karakteristik Mekanik High Volume Fly Ash Concrete,†Dr. Diss. Univ. Muhammadiyah Surakarta, pp. 1–9, 2014.

A. F. Kariri et al., “Analisis Kuat Tekan Beton Dengan Bahan Tambah Pelepah Pisang Pada Beton Mutu K-200,†U KaRsT, vol. 2, no. 2, pp. 26–34, 2018.

M. Soutsos, F. Kanavaris, and M. Elsageer, “Accuracy of maturity functions’ strength estimates for fly ash concretes cured at elevated temperatures,†Constr. Build. Mater., vol. 266, p. 121043, 2021, doi: 10.1016/j.conbuildmat.2020.121043.

D. Riyanto, H. Cahyadi, R. Respati, ) Alumni, F. T. Um, and P. Raya, “Pengaruh Pemakaian Arang Batok Kelapa Terhadap Kuat Tekan Beton K225,†Media Ilm. Tek. Sipil, vol. 6, no. 1, pp. 94–101, 2018.

F. Akbar, A. Ariyanto, and B. Edison, “Penggunaan tempurung kelapa terhadap kuat tekan beton k-100,†no. 1, pp. 1–11.

I. W. Suarnita, “Karakteristik Beton Ringan Dengan Menggunakan Tempurung Kelapa Sebagai Bahan Pengganti Agregat Kasar,†SMARTek, no. Vol 8, No 1 (2010), pp. 22–23, 2010.

A. I. Candra and E. Siswanto, “Menggunakan Hydroton Dan Master Ease 5010,†J. CIVILA, vol. 3, no. 2, pp. 162–165, 2018.

K. D. Kurniawan, A. Ridwan, and Y. Cahyo, “Uji Kuat Tekan Dan Arbsorpsi Pada Beton Ringan Dengan Penambahan Limbah Bata Ringan Dan Bubuk Talek,†J. Manaj. Teknol. Tek. Sipil, vol. 3, no. 1, p. 1, 2020, doi: 10.30737/jurmateks.v3i1.872.

P. Tamayo, J. Pacheco, C. Thomas, J. de Brito, and J. Rico, “Mechanical and durability properties of concrete with coarse recycled aggregate produced with electric arc furnace slag concrete,†Appl. Sci., vol. 10, no. 1, 2020, doi: 10.3390/app10010216.

A. I. Candra, H. Wahyudiono, S. Anam, and D. Aprillia, “Kuat Tekan Beton Fc ’ 21 , 7 Mpa Menggunakan Water Reducing And High Range Admixtures,†J. CIVILA, vol. 5, no. 1, 2020.

N. Suprihatin, “Tinjauan Kuat Tekan Dan Kuat Tarik Belah Beton Dengan Serat Kawat Bendrat Berbentuk ‘W’ Sebagai Bahan Tambah,†J. Teknol., vol. 1, no. 1, pp. 69–73, 2013, doi: 10.11113/jt.v56.60.

K. A. Alawi Al-Sodani, M. M. Al-Zahrani, M. Maslehuddin, O. S. Baghabra Al-Amoudi, and S. U. Al-Dulaijan, “Chloride diffusion models for Type I and fly ash cement concrete exposed to field and laboratory conditions,†Mar. Struct., vol. 76, no. November 2020,

p. 102900, 2021, doi: 10.1016/j.marstruc.2020.102900.

S. Wimaya, A. Ridwan, and S. Winarto, “Modifikasi Beton Fc 9,8 Mpa Menggunakan Abu Ampas Kopi,†J. Manaj. Teknol. Tek. Sipil, vol. 3, no. 2, p. 234, 2020, doi: 10.30737/jurmateks.v3i2.1096.

I. Marzuki, “Analisis Penambahan Additive Batu Gamping Terhadap Kualitas Komposisi Kimia Semen Portland,†J. Chem., vol. 10, no. 1, pp. 64–70, 2009.

A. Azam, “Tinjauan Pustaka Analisis Uji Kuat Beton,†Anal. Uji Kuat Tekan Bet. Univ. Muhammadiyah Purwokerto. Air menurut Kardiyono Tjokrodimulyo, 1992., pp. 5–23, 2013.

Hendy Febriyatno, “Pemanfaatan Limbah Bahan Padat Sebagai Agregat Kasar Pada Pembuatan Beton Normal,†J. Chem. Inf. Model., vol. 12 Suppl 1, no. 9, pp. 1–29, 2005, doi: 10.1007/978-1-4614-7990-1.

R. Rahmat and I. Hendriyani, “Analisis Kuat Tekan Beton Dengan Bahan Tambah Reduced Water Dan Accelerated Admixture,†Infoteknik, vol. 17, no. 2, pp. 205–218, 2016, doi: 10.20527/infotek.v17i2.2497.

E. Gardjito, A. I. Candra, and Y. Cahyo, “Pengaruh Penambahan Batu Karang Sebagai Substitusi Agregat Halus Dalampembuatan Paving Block,†UKaRsT, vol. 2, no. 1, p. 36, 2018, doi: 10.30737/ukarst.v2i1.374.

M. Vricilia, A. Ridwan, and A. I. Candra, “Kuat Tekan Pelat Beton Menggunakan Pasir Wlingi dan Wiremesh Diameter 4 mm,†J. Manaj. Teknol. Tek. Sipil, vol. 3, no. 2, p. 219, 2020, doi: 10.30737/jurmateks.v3i2.1099.

M. T. Hasholt, K. U. Christensen, and C. Pade, “Frost resistance of concrete with high contents of fly ash - A study on how hollow fly ash particles distort the air void analysis,†Cem. Concr. Res., vol. 119, no. May 2018, pp. 102–112, 2019, doi: 10.1016/j.cemconres.2019.02.013.

Ambo Upe, “Pemanfaatan Fly Ash Sebagai Bahan Campuran Portland Pozzolan Cement (PPC).†p. 7, 2006.

C. Lu and W. Wang, “A semi-quantitative investigation of the free expansion stage of steel corrosion in fly ash concrete,†J. Build. Eng., vol. 34, no. July, p. 101941, 2021, doi: 10.1016/j.jobe.2020.101941.

N. A. Affandy and A. I. Bukhori, “Pengaruh Penambahan Serat Alami Eceng Gondok Terhadap Kuat Tekan Beton Berkualitas Rendah,†U KaRsT, vol. 3, no. 2, pp. 65–72, 2019.

PlumX Metrics

Published

2021-07-09

Issue

Section

Articles