2034 *By* reku

78376244

Tersedia Secara Online di

http://ojs.unik-kediri.ac.id/index.php/jurmateks/index

🕶 http://dx.doi.org/ 10.30737/jurmateks

Mengurangi Resiko Banjir Pada Sungai Bruno Kediri dengan Konstruksi Bendung

M. U. Reku1*, Y. C. S. Poernomo2, S. Winarto3, A. Yamin4 1*,2,3Fakultas Teknik, Universitas Kadiri.

Email: 1* marlintoumbureku@gmail.com

ARTICLE INFO

Article history:

: 02 - 09 - 2021Artikel masuk Artikel revisi : 11 - 09 - 2021Artikel diterima : 21 - 09 - 2021

Keywords:

Flood Risk, Flood, River, Water Resources.

Style IEEE dalam mensitasi artikel ini:

[16]

C. Yohana, D. Griandini, and S. Muzambeg, "Penerapan Pembuatan Teknik Lubang Biopori Sebagai Resapan Upaya Banjir," Pengendalian Pemberdaya. Masy. Madani, vol. 1, no. 2, pp. 296-308, 2017, doi: 10.21009/jpmm.001.2.10.

ABSTRACT

Flooding is a problem that needs to be considered because it affects all sectors. The Bruno River in Kediri Regency often experiences flooding in the rainy season, although the overflow does not reach the settlements. But already, some levees in the Bruno river broke because they could not accommodate the discharge from the Bruno river. Such characteristics have the potential to be the cause of flooding. The core of the problem arranges various flood control efforts. The development of complementary infrastructure such as Water Resources becomes the right choice to overcome the flood event. This research aims to plan Water Resources to control the flood on the Bruno river, Kediri Regency. The analysis includes hydrological analysis and hydraulic analysis. The hydrological analysis includes rainfall calculations, match tests, and flood plans, while hydraulic analysis includes the calculation of bend dimensions. Rainfall data were obtained from kanyoran rain station for the past 10 years. From the rainfall data is done calculations and compared with estimates when re-from related agencies. So, the difference in discharge is known that is used as the basis of the analysis of Water Resources planning. The results of the study obtained flood discharge of 69,20762609 m^3/s . $\approx 70 m^3/s$ with a high bend planning bend 4.3m wide 30 m. The elevation of the water level downstream of the bend is +51.56 m so that the planning results can be used as a step to reduce flooding in the Bruno river.

1. Pendahuluan

Banjir merupakan peristiwa tergenangnya suatu wilayah yang terjadi akibat meluapnya air pada sungai atau sistem penampungan [1][2]. Luapan air mengindikasikan bahwa telah terjadi curah hujan yang tinggi di atas normal yang menyebabkan saluran/sungai tidak mampu menampung debit air tersebut. Kerugian yang ditimbulkan akibat bencana banjir cukuplah besar, seperti kerusakan bangunan hingga timbulnya korban jiwa [3][4][5]. Sehingga, perlu adanya perhatian lebih khusus mengenai permasalahan tersebut. Pengelolaan banjir secara

struktural maupun non struktural merupakan salah satu cara yang dapat dilakukan dalam meminimalisasi risiko yang timbul akibat banjir. Berbagai upaya pengendalian banjir disusun sesuai dengan inti permasalahannya[6][7]. Secara umum, pengendalian banjir dilakukan dengan pengurangan debit yang harus dialirkan serta peningkatan kapasitas sungai. Pengurangan debit dilakukan dengan membuat tampungan air sedangkan peningkatan kapasitas sungai dapat dilakukan dengan normalisasi sungai. Selain itu, perbaikan tata guna lahan hingga pembangunan/perbaikan insfrastruktur pelengkap juga dapat dilakukan sebagai upaya pengendalian banjir[8].

Pengelolaan sumber daya air dengan baik akan meminimalisir potensi bencana yang diakibatkan oleh air [9]. Hal tersebut juga akan berdampak pada kesinambungan dan kelestarian lingkungan hidup [10]. Pengelolaan sumber daya air dapat dilakukan dengan pembuatan infrastruktur bangunan air seperti bendung, embung, bendungan[11][12][13]. Bendung merupakan salah satu bangunan air yang berfungsi untuk meninggikan muka air sungai dan mengarahkan atau mengalihkan sebagian air ke tepi kanan sungai dan tepi kiri sungai dengan cara mengalirkan ke saluran melalui bangunan jaringan. Konstruksi bendung perlu direncanakan dengan tepat untuk menjamin berfungsinya bangunan tersebut dengan tepat [14][15].

Sungai Bruno merupakan salah satu sungai yang berada di Kabupaten Kediri [16]. Sungai Bruno termasuk salah satu anak sungai Brantas dengan debit yang cukup besar, dengan lebar sungai mencapai 4 m. Sungai Bruno sering mengalami banjir pada musim penghujan, meski luapannya tidak mencapai permukiman warga. Namun sudah beberapa tanggul di sungai Bruno jebol karena tidak mampu menampung debit dari sungai Bruno. Karakteristik yang demikian cukup berpotensi untuk menjadi penyebab banjir. Tujuan dari penelitian ini yaitu, melakukan pengendalian banjir dengan pembangunan konstruksi bendung pada Sungai Bruno Kediri. Sehingga, muka air sungai dapat ditinggikan dan dapat dialihkan ke tepi kanan maupun kiri sungai.

2. Metodologi Penelitian

Penelitian dilakukan pada daerah aliran sungai (DAS) sungai Bruno, Semen, Kabupaten Kediri. Dilakukan perencanaan konstruksi bendung sebagai upaya untuk mengendalikan banjir pada sungai tersebut. Perhitungan anlisa hidrologi serta hidolika dilakukan hingga didapatkan komponen konstruksi bendung. Analisa hidrologi meliputi perhitungan curah hujan, uji kecocokan serta banjir rencana[17]. Sedangkan analisa hidrolika meliputi perhitungan dimensi bendung. Beberapa data yang diperlukan dalam melakukan

perencanaan, seperti data tata gula lahan (*land use*), daerah yang memiliki tangkapan air, data topografi, serta dan data curah hujan dikumpulkan. Data yang telah didapatkan kemudian diolah dengan menggunakan beberapa metode dengan uraian sebagai berikut:

2.1 Analisa Curah Hujan

Curah hujan pada suatu daerah merupakan salah satu faktor yang menentukan besarnya debit banjir yang terjadi pada suatu wilayah [18][19]. Data curah hujan diperhitungkan untuk memperkirakan debit banjir rencana. Data curah hujan pada stasiun kanyoran diuraikan sebagai berikut

Tabel 1. Data Curah Hujan

Bulan	Data Curah Hujan Tahunan (mm)									
Dulan	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019
Januari	400	370	361	440	269	226	289	348	423	395
Februari	347	221	220	344	235	292	401	306	397	375
Maret	370	338	205	241	143	357	271	310	378	315
April	273	242	186	258	150	264	145	268	417	417
Mei	255	164	63	179	142	73	199	81	197	210
Juni	1114	4	8	230	63	0	148	47	8	7
Juli	117	2	0	83	12	0	68	22	0	0
Agustus	47	0	0	0	2	0	68	0	0	0
September	181	0	0	0	0	0	119	15	75	112
Oktober	207	17	33	33	3	1	192	53	187	215
November	311	150	120	261	156	81	341	268	255	356
Desember	362	207	282	335	246	250	260	286	467	487
Jumlah	3984	1715	1478	2404	1421	1544	2501	2004	2804	2889

Sumber, BPS Kab, Kediri,

Pada analisa curah hujan, dilakukan perhitungan curah hujan maksimum dengan metode poligon thiesen. Dari data hujan yang diperoleh dari stasiun hujan perlu dilakukan analisis frekuensi dan kemungkinan terjadinya serta dilakukan perhitungan distribusi hujan dengan menggunakan Metode Gumbel I, Metode Log Normal dan Log Pearson III [20].

2.2 Intensitas Hujan Rencana

Intensitas Hujan Rencana adalah suatu tingginya curah hujan yang terjadi dalam kurun waktu tertentu[21][22]. Perhitungan Intensitas hujan rencana ini menggunakan metode Mononobe yang merupakan sebuah variasi dari persamaan – persamaan curah hujan jangka pendek[23]. Persamaannya sebagai berikut:

$$I = \frac{R_{24}}{24} x \left[\frac{24}{t} \right]^{2/3}$$

I = Intensitas curah hujan (mm/jam)

t = Lamanya curah hujan (jam)

 R_{24} = Curah hujan maksimum dalam 24 Jam (mm)

2.3 Debit Banjir Rencana

Debit banji rencana digunakan sebagai dasar perhitungan menentukan volume tampungan dari suatu bangunan di sungai. Terdapat beberapa metode perhitungan debit banjir, yaitu metode Rasional, metode Der Weduwen, dan metode Hasper. [24][25]. Untuk melakukan perhitungan debit rencana adalah debit aliran sungai Bruno, dengan Q rencana 10, 15, 25, dan 50 tahun.

Persamaan matematik Metode Rasional adalah sebagai berikut:

$$Q = 0,278. C. I. A$$

dimana:

Q = Debit (m3/detik)

0,278 = Konstanta, digunakan jika satuan luas daerah menggunakan km²

C = Koefisien aliran

I = Intensitas curah hujan selama waktu konsentrasi (mm/jam)

A = Luas daerah aliran (km^2)

2.4 Panjang Mercu Bendung

Panjang mercu bendung yaitu jarak antara pangkal-pangkalnya (*abutment*), sebaiknya sama dengan lebar rata-rata sungai pada bagian yang stabil. Panjang mercu bendung efektif dapat dihitung dengan rumus sebagai berikut:

$$Be = Bb - 20\% \Sigma b - \Sigma t$$

$$Be = Bb - 2(n kp + ka)H$$

Keterangan:

Be = panjang mercu efektif (m) n = jumlah pilar pembilas dan pilar jembatan

Bb = panjang mercu bruto (m) kp = koefesien kontraksi pilar

 $\Sigma b = \text{jumlah lebar pembilas}$ ka = koefesien kontraksi pangkal bendung

 Σt = jumalh pilar-pilar pembilas

H = tinggi energy (m), yaitu h+k;

h = tinggi air; k = v2/2g

Mengurangi Resiko Banjir Pada Sungai Bruno Kediri dengan Konstruksi Bendung http://dx.doi.org/ 10.30737/jurmateks

2.5 Tinggi Muka Air diatas Bendung

Tinggi muka air di atas mercu dapat dihitung dengan persamaan tinggi energi-debit, untuk ambang bulat dan pengontrol segi empat, yaitu :

$$Qd = Cd x^{\frac{2}{3}} beff x \sqrt{2/3g} x H^{\frac{3}{2}}$$

Keterangan:

Qd = debit (m3/det)

Cd = koefisien debit (Cd = C0.C1.C2)

g = percepatan gravitasi (m/det²)

beff = panjang mercu efektif (m)

H = tinggi energi di atas mercu (m)

3. Pembahasan

3.1 Analisa Hidrologi

Analisa hidrologi meliputi perhitunga curah hujan, uji kecocokan serta banjir rencana dengan uraia sebagai berikut:

1) Curah Hujan

Perhitungan curah hujan maksimum didasarkan pada data curah hujan yang didapatkan dari stasiun Hujan Kanyuran dalam 10 tahun terakhir (2010-2019). Hasil perhitungan curah hujan maksimum diuraikan sebagai berikut:

Tabel 2. Perhitungan Curah hujan maksimum

Tahun	Curah Hujan Maksimum (mm)
2010	400
2011	370
2012	361
2013	440
2014	269
2015	357
2016	401
2017	400
2018	415
2019	487

Sumber. Hasil Analisa

Dari **Tabel 2.** Dapat dilihat bahwa curah hujan maksimum pada tahun 2010 higga 2019 berada pada rentang 200-500 mm . curah hujan tertinggi terjadi pada tahun 2019 sebesar 487 mm.

2) Frekuensi Debit Banjir

Dari data hujan yang diperoleh dari stasiun hujan perlu dilakukan analisis frekuensi dan kemungkinan terjadinya. Terdapat parameter statistik yang digunakan dalam perhitungan ini, yaitu rata – rata, simpangan baku, koefisien skewness, koefisien variasi, dan koefisin kurtosis

a. Standart Deviasi

$$Sd = \sqrt{\frac{\sum (X_i - \overline{X^2})}{n-1}}$$

$$Sd = \sqrt{\frac{29826}{10 - 1}}$$

$$Sd = 57,57$$

Didapatkan nilai standart deviasi 57,57

b. Koefisien Skewness (Cs)

$$Cs = \frac{\sum_{i=1}^{n} \{(Xi - \bar{X})^{2}\}}{(n-1)(n-2)Sd^{3}}$$

$$Cs = \frac{10 \times (-783258)}{(10 - 1)(10 - 2)47,75^3}$$

$$Cs = \frac{10 \times (-783258)}{(10-1)(10-2)190778,20}$$

$$Cs = -0.570$$

Didapatkan nilai Koefisien Skewness -0,570

c. Pengukuran Kurtosis (Ck)

$$Ck = \frac{\frac{1}{n} \sum_{i=1}^{n} \left\{ (Xi) - \overline{X} \right\}^4}{Sd^4}$$

$$Ck = \frac{\frac{1}{10}311616630}{57.57^4}$$

$$Ck = 2,027$$

Didapatkan nilai Pengukuran Kurtosis 2,027

d. Koefisien Variasi (Cv)

$$Cv = \frac{Sd}{\overline{x}}$$

$$Cv = \frac{57,57}{390}$$

Cv = 0,148

Didapatkan nilai Koefisien Variasi 0,148

3) Analisa Jenis Sebaran

Analisis jenis sebaran dilakukan dengan melakukan perhitungan curah hujan rencana menggunakan metode Normal, Matode Gumbel, Metode Log Person III dan Metode Log Normal. Hasil perhitungan diuraikan sebagai berikut :

Tabel 3. Hasil Perhitungan Analisa Jenis Sebaran.

No	Periode	Metode Gumbel I	Metode Log Person III	Metode Log Normal
1	2	382,20	228,9791575	392,1614814
2	5	450,91	371,4130597	441,115347
3	10	496,39	472,8890116	407,3796411
4	25	539,46	607,1008696	483,2215473
5	50	553,88	710,2246907	515,1566904
6	100	596,52	815,2730113	0
7	200	638,85	923,2020689	-
8	1000	681,04	1185,218445	-

Sumber. Hasil Analisa

Tabel 3. menunjukan jenis sebaran dengan bebagai metode, dippilih metode Metode Gumbel.

4) Analisa Intensitas Hujan Rencana

Perhitungan Intensitas hujan rencana ini menggunakan metode Mononobe dengan hasil sebagai berikut: :

Tabel 4. Perhitungan Insensitas Hujan berdasarkan waktu lamanya (t)

	R2	R5	R10	R25	R50	R100	R200	R1000
t (jam)	382,20	450,91	496,39	539,46	553,88	596,5235	638,85	681,04
1	132,501	156,321	172,090	187,020	192,020	206,803	221,477	236,103
2	83,470	98,476	108,410	117,815	120,965	130,278	139,522	148,735
3	63,700	75,151	82,732	89,910	92,314	99,421	106,475	113,506
4	52,583	62,036	68,294	74,219	76,203	82,070	87,893	93,697
5	45,315	53,461	58,854	63,960	65,670	70,726	75,744	80,746
6	40,128	47,342	52,118	56,640	58,154	62,631	67,075	71,504
7	36,209	42,719	47,028	51,108	52,474	56,514	60,524	64,521
8	33,125	39,080	43,022	46,755	48,005	51,701	55,369	59,026
9	30,624	36,129	39,773	43,224	44,380	47,796	51,188	54,568
10	28,546	33,678	37,076	40,292	41,369	44,554	47,716	50,867
11	26,789	31,605	34,793	37,812	38,823	41,811	44,778	47,735
12	25,279	29,824	32,832	35,681	36,635	39,455	42,255	45,045
13	23,966	28,274	31,126	33,827	34,731	37,405	40,059	42,704
14	22,810	26,911	29,626	32,196	33,057	35,602	38,128	40,646
15	21,785	25,701	28,294	30,749	31,571	34,001	36,414	38,819
16	20,868	24,619	27,102	29,454	30,241	32,569	34,880	37,184
17	20,041	23,644	26,029	28,287	29,043	31,279	33,499	35,711
18	19,292	22,760	25,056	27,230	27,957	30,110	32,246	34,376
19	18,609	21,954	24,169	26,266	26,968	29,044	31,105	33,159
20	17,983	21,216	23,356	25,383	26,061	28,068	30,059	32,044
21	17,408	20,537	22,609	24,570	25,227	27,169	29,097	31,019
22	16,876	19,910	21,918	23,820	24,457	26,340	28,209	30,071
23	16,383	19,329	21,278	23,124	23,743	25,570	27,385	29,193
24	15,925	18,788	20,683	22,477	23,078	24,855	26,619	28,377
Rata - Rata	34,592	40,811	44,928	48,826	50,131	53,991	57,821	61,640

Sumber. Hasil Analisa

Rata - rata dari intensitas hujanlah yang nantinya akan digunakan pada perhitunga debit banjir rencana.

4) Debit Banjir Rencana

Untuk menghitung atau memperkirakan besarnya debit banjir yang akan terjadi dalam berbagai periode ulang dengan hasil yang baik dapat dilakukan dengan analisis data aliran dari sungai Bruno Hasil perhitungan diuraikan sebagai berikut:

Tabel 5. Perhitungan Debit Banjir Rencana

Periode	Metode Rasional	Metode Weduwen	Metode Haspers
2	63,97486894	161,1536	315,307
5	75,47598314	190,12507	371,992
10	83,08961114	209,30391	409,517
25	90,29835609	227,46284	445,046
50	92,71243326	233,54393	456,944
100	99,85014609	251,52393	492,123
200	106,9350922	269,37101	527,042
1000	113,9966992	287,1593	561,846

Sumber: Hasil Analisa.

Debit banjir rencana diatas kemudian dibandingkan untuk mengetahui selisih. Kemudian debit banjir selisih akan digunakan untuk mengetahui volume tampungan kolam. Yakni debit selisih atau dapat disebut kelebihan debit lalu dikali dari t yang didapat. Berikut adalah perbandingan dari kala ulang perhitungan dan dinas, yakni:

Tabel 6. Debit banjir hujan kala ulang analisa & data instansi

Periode Ulang (Tahun)	Debit Banjir Hujan Kala Ulang Analisa (m³/dtk)	Debit Banjir Hujan Kala Ulang Instansi (<i>m</i> ³/dtk)
2	63,97486894	14,57771
5	75,47598314	17,38479
10	83,08961114	19,09214
25	90,29835609	21,09073
50	92,71243326	22,46833
100	99,85014609	23,75143
200	106,9350922	24,95067
1000	113,9966992	27,45812

Sumber: Hasil Analisa

Karena asumsi perencanaan bangunan Bendung adalah untuk 25 tahun maka kita bandingkan antara debit banjir $R_{\rm 25}$.

Kelebihan Debit = Debit banjir analisa – Debit banjir Instansi

= 90,29835609-21,09073

Q_{lebih} = $69,20762609 \text{ m}^3 / \text{dtk} \approx 70 \text{ m}^3 / \text{dtk}$

3.2 Analisa Hidrolika

1) Perencanaan Hidrolis Bendung

Elevasi mercu bendung untuk perencanaan bangunan bendung dengan puncak dinding beton +53,705 dengan tinggi air maksimum diijinkan dalam saluran 30 cm dibawah dinding cor beton berarti air paling tinggi dalam saluran adalah +53.405 sedangkan elevasi dasar sungai didapat +50.

Perhitungan elevasi bendung:

a. Elevasi saluran	=+53,705m
b. Kehilangan pada pintu inlet	=0,10 m
c. Kehilangan pada bangunan ukur	=0,10 m
d. Kehilangan pada pintu pengambilan	=0,10 m
e. Kehilangan oleh slope saluran	=0,10 m
f. Bertambah tinggi air pada saluran suplesi	=0,10 m
g. Keamanan	=0.095 m
h. Elevasi mercu bendung	= +54,3m
g. Tinggi mercu bendung	= Elevasi mercu - Tinggi mercu bendung
	= 54.3 - 50 = 4.3 m

2) Lebar Efektif Bendung

Karena adanya pilar dan bangunan pembilas, maka lebar total bendung tidak seluruhnya dapat dimanfaatkan untuk melewatkan debit yang ada. Jadi lebar efektif bendung lebih pendek dari lebar bendung yang sebenarnya.

Be = lebar efektif bendung (m)

B = lebar bendung (m) = 30 m N = jumlah pilar = 3 Kp = koefisien kontraksi pilar = 0,01

Ka = koefisien kontraksi pangkal bendung = 0,2

H1 = tinggi energi (m)

Perhitungan:

B1 = B2 = 10,00 m
B3 = 1 m
Be1 = B1 - 2 (n.Kp + Ka).H1
=
$$10,00 - 2 (1*0,01 + 0,2)$$
 H1
= $10,00 - 0,42$ H1

Be2 = B2 - 2 (n.Kp + Ka).H1
=
$$10,00 - 2$$
 (2 * 0,01) H1
= $10,00 - 0,04$ H1
Be3 = B2 - 2 (n.Kp + Ka).H1
= $10,17 - 2$ (2 * 0,01) H1
= $10,17 - 0,04$ H1
Bs = $0,80 * 1 = 0,8$ m
Be = Be1 + Be2 + Bisa
= $(10,00 - 0,42$ H1) + 2 * $(10,00 - 0,04$ H1) + 0,8
= $30,8 - 0,5$ H1

3) Tinggi Muka Air Banjir di Atas Mercu Bendung

Perhitungan tinggi muka air banjir di atas mercu menggunakan persamaan debit bendung dengan mercu bulat :

$$Q = 70 \text{ m}3/\text{dtk}$$

$$Cd = Koefisien debit (Cd = C0.C1.C2)$$

Direncanakan p/H1 \geq 1,5 dan r = 0.5 H1, maka didapat H1/r = 2, dengan didapat nilai

$$C0 = 1.33$$
. Dimisalkan besar $C1 = 1$ dan $C2 = 1$

$$g = 9.8 \text{ m/dtk2}$$

$$Be = 30.8 - 0.5 \text{ H}1$$

H1 = Tinggi energi diatas mercu (m)

Perhitungan:

70,0 = 1,33*
$$\frac{2}{3}$$
 * $\sqrt{\frac{2}{3}}$ *9,8 *(30,8 0,5 H1) * $H_1^{1,5}$
= 0,867 x $\frac{2\frac{1}{2}}{3}$ x 9,8 x 30,8 $H_1^{1,5}$ - 0,5 $H_1^{2,5}$
= 4,005 X 30,8 $H_1^{1,5}$ - 0,5 $H_1^{2,5}$

$$17,14 = 30,8H_1^{1,5} - 0,5H_1^{2,5}$$

Dengan cara coba-coba diperoleh H1 = 0,7 m

Be =
$$30.8 - 0.5*0.7 = 30.45 \text{ m}$$

Dari hasil perhitungan di atas maka dapat ditentukan elevasi muka air banjir dan tinggi air di atas mercu yaitu :

Elevasi muka air banjir = elevasi mercu + H1 = +54,3+0,7 = +55

Untuk menentukan tinggi air di atas mercu dapat dicari dengan persamaan:

$$Hd = H1 - k$$

Dimana:

K =
$$\frac{v^2}{2g}$$
 dengan v = $\frac{Q}{B_{e*H_1}} = \frac{70}{30,45*0,7} = 3,285 m/dtk$

$$K = \frac{3,285^2}{2*9.8} 0,55 \text{ m}$$

Jadi tinggi air di atas mercu adalah : Hd = 0.7 - 0.55 = 0.15 m

4) Tinggi Muka Air Banjir di Hilir Bendung

Diketahui:

Debit banjir (Q) = 70 m3/dtk

= 30 mLebar rata-rata sungai

Kemiringan sungai (Is) = 0.0175

 γB (koefisien Bazin) = 1.5

Rumus Chezy:

$$A = (b + m h) h$$

$$V = c.\sqrt{R.I}$$

$$C = \frac{87}{1 + \frac{YB}{\sqrt{R}}}$$

$$P = b + 2h\sqrt{m^2 + 1}$$

$$R = \frac{A}{P}$$

$$Q = A * V$$

Perhitungan:

$$A = (b + m h) h$$

$$= (30 + 0.5*h)h$$

$$= 30h + 0.5h^2$$

$$P = b + 2h\sqrt{m^2 + 1}$$

$$=30+2*h\sqrt{0.5^2}+1$$

$$=30 + 2.236h$$

$$R = \frac{A}{P} = \frac{30h + 0.5h2}{30 + 2.236h}$$

$$c = \frac{87}{1 + \frac{1,5}{\sqrt{\frac{30h + 0,5h^2}{30 + 2,236h}}}}$$

$$V = c.\sqrt{R.I}$$

$$= \frac{87}{1 + \frac{1.5}{\sqrt{\frac{30h + 0.5h^2}{30 + 2.236h}}}} \sqrt{\frac{30h + 0.5h^2}{30 + 2.236h}} *0.001$$

$$Q = A * V$$

didapat h = 1,56 m, maka:

Elevasi dasar sungai = +50

Elevasi muka air di hilir bendung = +50 + 1,56

$$= +51.56 \text{ m}$$

4. Kesimpulan dan Saran

4.1 Kesimpulan

Dari hasil perencanaan yang telah dilakukan dapat disimpulkan bahwa

- 1) Kelebihan debit banjir selisih antara perhitungan dan data dinas terkait pada kala hujan 25 tahun didapatkan yaitu $69,20762609 \text{ m}^3/\text{dtk}$. $\approx 70 \text{ m}^3/\text{dtk}$
- 2) Dari perencanaan bendung sebagai sarana untuk mengendalikan debit banjir didapatkan Elevasi mercu bendung (+54,3), Elevasi dasar sungai (+50), Tinggi mercu bendung (4,3m), debit banjir (Q)(70 m3/dtk), lebar bendung (30 m), hilir bendung (1,56), Elevasi dasar sungai (+50), Elevasi muka air di hilir bendung (+51,56 m)

5. Ucapan Terima Kasih

Peneliti mendukung Universitas Kadiri, khususnya kepada Fakultas Teknik yang telah memberikan kesempatan untuk melakukan penelitian dan penyusunan laporan.

Daftar Pustaka

- [1] F. M. Fan, W. Collischonn, K. J. Quiroz, M. V. Sorribas, D. C. Buarque, and V. A. Siqueira, "Flood forecasting on the Tocantins River using ensemble rainfall forecasts and real-time satellite rainfall estimates," *J. Flood Risk Manag.*, vol. 9, no. 3, pp. 278–288, 2016, doi: 10.1111/jfr3.12177.
- [2] R. A. Mel, D. P. Viero, L. Carniello, and L. D'Alpaos, "Optimal floodgate operation for river flood management: The case study of Padova (Italy)," *J. Hydrol. Reg. Stud.*, vol. 30, no. June, p. 100702, 2020, doi: 10.1016/j.ejrh.2020.100702.
- [3] A. Gunarto, F. Nursandah, M. Zaenuri, N. A. Affandy, U. Kadiri, and U. I. Lamongan, "Perencanaan Sistem Drainase Ruas Jalan Kuncir Sawahan Kabupaten Nganjuk," *UKaRsT*, vol. 1, no. 2, pp. 156–164, 2017.
- [4] S. M. H. Shah, Z. Mustaffa, F. Y. Teo, M. A. H. Imam, K. W. Yusof, and E. H. H. Al-Qadami, "A review of the flood hazard and risk management in the South Asian Region, particularly Pakistan," *Sci. African*, vol. 10, p. e00651, 2020, doi: 10.1016/j.sciaf.2020.e00651.
- [5] N. W. Arnell and S. N. Gosling, "The impacts of climate change on river flood risk at the global scale," *Clim. Change*, vol. 134, no. 3, pp. 387–401, 2016, doi: 10.1007/s10584-014-1084-5.
- [6] A. D. Wicaksono, E. Hidayah, and R. U. A. Wicaksono, "Flood Vulnerability Assessment of Kali Welang Floodplain by Using Analytic Hierarchy Process Based Methods," *Ukarst*, vol. 5, no. 1, pp. 95–109, 2021, doi: 10.1016/j.gloenvcha.2006.03.008.
- [7] A. Herison, Y. Romdania, O. T. Purwadi, and R. Effendi, "Kajian Penggunaan Metode Empiris dalam Menentukan Debit Banjir Rancangan pada Perencanaan Drainase (Review)," *J. Apl. Tek. Sipil*, vol. 16, no. 2, p. 77, 2018, doi: 10.12962/j2579-891x.v16i2.3819.
- [8] J. Teng, A. J. Jakeman, J. Vaze, B. F. W. Croke, D. Dutta, and S. Kim, "Flood inundation modelling: A review of methods, recent advances and uncertainty analysis," *Environ. Model. Softw.*, vol. 90, pp. 201–216, 2017, doi: 10.1016/j.envsoft.2017.01.006.
- [9] R. Nakamura and Y. Shimatani, "Extreme-flood control operation of dams in Japan," *J. Hydrol. Reg. Stud.*, vol. 35, no. September 2020, p. 100821, 2021, doi: 10.1016/j.ejrh.2021.100821.
- [10] B. Grizzetti, D. Lanzanova, C. Liquete, A. Reynaud, and A. C. Cardoso, "Assessing water ecosystem services for water resource management," *Environ. Sci. Policy*, vol. 61, pp. 194–203, 2016, doi: 10.1016/j.envsci.2016.04.008.
- [11] G. H. J. P. September, E. Hidayah, "Assessment and Optimization of Water Division Pattern in Sampean Baru Irrigation Area," *UKaRsT*, vol. 5, no. 1, 2021.
- [12] J. Yazdi, M. Sabbaghian Moghaddam, and B. Saghafian, "Optimal Design of Check Dams in Mountainous Watersheds for Flood Mitigation," *Water Resour. Manag.*, vol. 32, no. 14, pp. 4793–4811, 2018, doi: 10.1007/s11269-018-2084-4.
- [13] H. M. Tu and H. M. Chen, "Effects of flood and flood-control engineering on morbidity," Int. J.

- Disaster Risk Reduct., vol. 51, no. August, p. 101835, 2020, doi: 10.1016/j.ijdrr.2020.101835.
- [14] O. Ari Swenda, A. Ridwan, and S. Winarto, "Analisa Kebutuhan Air Baku Berdasarkan Mata Air Sungai Bayong (Study Kasus Di Kec. Bendungan Kab. Trenggalek)," *J. Manaj. Teknol. Tek. Sipil*, vol. 2, no. 1, p. 51, 2019, doi: 10.30737/jurmateks.v2i1.391.
- [15] P. I. Purwanto, P. T. Juwono, and R. Asmaranto, "Analisa Keruntuhan Bendungan Tugu Kabupaten Trenggalek," *J. Tek. Pengair.*, vol. 8, no. 2, pp. 222–230, 2017, doi: 10.21776/ub.pengairan.2017.008.02.8.
- [16] C. Yohana, D. Griandini, and S. Muzambeq, "Penerapan Pembuatan Teknik Lubang Biopori Resapan Sebagai Upaya Pengendalian Banjir," *J. Pemberdaya. Masy. Madani*, vol. 1, no. 2, pp. 296–308, 2017, doi: 10.21009/jpmm.001.2.10.
- [17] D. A. D. Nusantara, "Evaluasi Kapasitas Saluran Drainase di Catchment Area Sub Sistem Bendul Merisi Kota Surabaya," U KaRsT, vol. 4, no. 1, 2020.
- [18] R. D. Prasetyo, Y. Cahyo, and A. Ridwan, "Analisa Perencanaan Sistem Drainase Dalam Upaya Penanggulangan Banjir Di Kecamatan Gandusari Kabupaten Trenggalek," *J. Manaj. Teknol. Tek. Sipil*, vol. 2, no. 1, p. 131, 2019, doi: 10.30737/jurmateks.v2i1.405.
- [19] I. M. Brodie, "Rational Monte Carlo method for flood frequency analysis in urban catchments," J. Hydrol., vol. 486, no. January 2011, pp. 306–314, 2013, doi: 10.1016/j.jhydrol.2013.01.039.
- [20] Romadhon, M. Zaenuri, and H. Pratikno, "Perencanaan Sistem Drainase Dan Trotoar (Study Kasus: Lingkungan Kelurahan Banjaran Kota Kediri)," UKaRsT, vol. 3, no. 1, pp. 66–74, 2019.
- [21] A. Saad Al-Wagdany, "Intensity-duration-frequency curve derivation from different rain gauge records," *J. King Saud Univ. Sci.*, vol. 32, no. 8, pp. 3421–3431, 2020, doi: 10.1016/j.jksus.2020.09.028.
- [22] S. Z and Muhammad Comal Rifai, "Analisis Curah Hujan Untuk Pendugaan Debit Banjir Pada Das Batang Arau Padang," *Menara Ilmu*, vol. VII, no. 3, pp. 134–144, 2018.
- [23] N. K. Agustin, A. Ridwan, and S. Sudjati, "Analisa Sistem Jaringan Drainase (Studi Kasus: Desa Sumengko, Kecamatan Sukomoro, Kabupaten Nganjuk)," *J. Manaj. Teknol. Tek. Sipil*, vol. 2, no. 2, p. 245, 2019, doi: 10.30737/jurmateks.v2i2.516.
- [24] J. Sutikno, A. Ridwan, and Y. C. S. Purnomo, "Analisa Stabilitas Checkdam Pabyongan Desa Mulyosari Kecamatan Pagerwojo Kabupaten Tulungagung," *J. Manaj. Teknol. Tek. Sipil*, vol. 1, no. 1, pp. 66–75, 2018, doi: 10.30737/jurmateks.v1i1.141.
- [25] W. T. Cahyono, Y. C. S. Purnomo, and S. Winarto, "Studi Efisiensi Pemberian Air Irigasi Pada Desa Grompol Kecamatan Gampengrejo Kabupaten Kediri (Studi kasus di saluran sekunder BPP I Gampengrejo Kediri)," J. Manaj. Teknol. Tek. Sipil, 2018, doi: 10.30737/jurmateks.v1i1.137.

ORIGINALITY REPORT

12% SIMILARITY INDEX

Internet

MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED)

\bigstar ejournal.warmadewa.ac.id

1%

EXCLUDE QUOTES ON EXCLUDE BIBLIOGRAPHY ON

EXCLUDE MATCHES

OFF