1829 By hermawan

Tersedia Secara Online di

http://ojs.unik-kediri.ac.id/index.php/jurmateks/index

JURMATEKS

🥶 http://dx.doi.org/ 10.30737/jurmateks

Mengurangi Durasi Pelaksanaan Proyek Dengan Menggunakan Metode Time Cost Trade Off

M. R. Hermawan^{1*}, A.Ridwan², Suwarno³, 1*,2,3Fakultas Teknik, Universitas Kadiri.

Email: 1* rizal17513190@gmail.com

ARTICLE INFO

Article history:

: 16 - 06 - 2021Artikel masuk : 27 - 08 - 2021Artikel revisi Artikel diterima : 06 - 09 - 2021

Keywords:

Microsoft Project, Project Acceleration, Time Cost Trade Off, Work Shift.

Style IEEE dalam mensitasi artikel [16]

M. Kholil, B. Nurul Alfa, and M. Hariadi, "Scheduling of House Development Projects with CPM and PERT Method for Time Efficiency (Case Study: House Type 36)," IOP Conf. Ser. Earth Environ. Sci., vol. 140, no. 1, 2018, doi: 10.1088/1755-1315/140/1/012010.

ABSTRACT

Construction project management is one of the things that affect the smooth work of construction projects. Time and cost become benchmarks in the success of a project. In the construction project Bhayangkara Nganjuk hospital indicated experiencing delays caused by unse endorsive weather conditions. The delay will have an impact on the costs that will be incurred. The purpose of this research is to accelerate the time on the project by using the time cost trade off method. Development work includes IGD room work, Pharmaceutical Installation, Laboratory and Inpatiation Room. The data used in the form of Time schedule and budget plan costs obtained from the implementing contractor. From the data, analysis is carried out in the form of determination of relationships between jobs, determination of critical pathways, and acceleration analysis by applying a work shift system. The relationship between jobs is illustrated through the Microsoft Project. The results of the study obtained a total cost after acceleration of Rp. 3,873,505,632.00 the value was more expensive 11.25% than the normal cost of the project of Rp 3,481,698,000.00. With an accelerated duration of 125 days or 25.71% faster than the normal duration of the project of 180 days. So that from these results, it can be used as a reference in the implementation of the project regarding work hours that can be applied as well as the cost of the project and the duration of acceleration required.

1. Pendahuluan

Proyek konstruksi merupakan serangkaian kegiatan pembangunan guna untuk memenuhi kebutuhan tertentu. Pelaksanaan proyek konstruksi harus memiliki manajemen proyek yang baik agar berjalan dengan lancar [1]. Manajemen proyek merupakan pendekatan untuk mengelola suatu proyek dengan efisien dan efektif. Manajemen proyek meliputi perencanaan, pelaksanaan, serta pengendalian kegiatan-kegiatan proyek. Manajemen proyek yang baik menjadikan penyelesaian proyek dapat terealisasi dengan tepat serta tidak terjadi pembengkakan biaya. [2]-[4]. Manajemen proyek sangat penting dalam proses berlangsungnya

suatu proyek konstruksi. Selain itu, manajemen proyek juga menentukan keberhasilan proyek sesuai dengan sasaran dan tujuan awal proyek tersebut. Keberhasilan tersebut dapat diupayakan dengan merencanakan setiap item pekerjaan dengan tepat, mulai dari perhitungan struktur, perhitungan estimasi biaya, penjadwalan serta metode pelaksanaan pekerjaan proyek.

Dalam pelaksanaan proyek terdapat berbagai faktor yang dapat menjadikan pelakasaan proyek tidak terealisasi dengan tepat serta mengalami keterlambat, salah satunya yaitu produktivitas pekerja serta kondisi alam [5][6]. Pada Proyek Pembangunan IGD, Instalasi Farmasi, Laboratorium dan Ruang Inap RS. Bhayangkara Nganjuk terdapat indikasi adanya keterlambatan yang diakibatkan oleh beberapa faktor seperti cuaca yang tidak menentu serta mobilisasi sehingga perlu dilakukannya pengendalian proyek. Percepatan merupakan salah satu pengendalian hal yang paling efisien dalam mengatasi keterlambatan suatu proyek [7]. Percepatan dilakukan dengan melakukan penjadwalan ulang agar proyek dapat selesai tepat waktu atau dapat diselesaikan lebih cepat dengan durasi dan biaya yang optimal.

Terdapat beberapa metode percepatan proyek yang dapat dilakukan. *Time cost trade off* merupakan salah satu jenis metode percepatan proyek dengan pertukaran antara waktu dan biaya, dapat dilakukan dengan cara menerapkan sumber daya tambahan, lembur atau subkontrak tugas yang akan mempengaruhi pada waktu penyelesaian proyek serta biaya proyek [8]. Beberapa penelitian tentang percepatan proyek telah dilakukan sebelumnya menunjukkan bahwa percepatan proyek menggunakan metode *time cost trade off* mampu menghemat biaya proyek [10]. Penambahan jam kerja (lembur) lebih efisien daripada alternatif penambahan jumlah alat dan tenaga kerja [11].

Tujuan penelitian ini yaitu melakukan percepatan waktu pelaksanaan proyek pembangunan RS. Bhayangkara Nganjuk menggunakan metode *time cost trade off*. Dengan metode tersebut dapat diketahui perbandingan durasi waktu dan biaya antara perencanaan awal dengan durasi waktu yang didapat setelah dilakukan percepatan. Sehingga, dengan diketahuinya hal tersebut dapat digunakan sebagai acuan dalam pelaksanaan proyek dalam melakukan kegiatan proyek secara optimal.

2. Metodologi Penelitian

Penelitian ini merupakan jenis penelitian lapangan. Penelitian dilakukan dengan melakukan percepatan jadwal penyelesaian proyek dengan mengggunakan metode *Time cost trade off* yang dilakukan pada proyek Pembangunan IGD, Instalasi Farmasi, Laboratorium dan Ruang Inap RS. Bhayangkara Nganjuk, Jawa Timur dengan rencana anggaran biaya normal sebesar Rp 3.481.698.000,00.

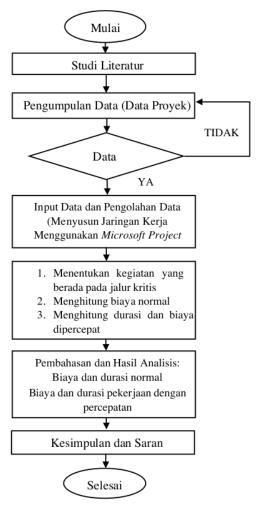
2.1 Biaya Proyek

Dalam proses pelaksanaan ada biaya yang harus dikeluarkan, yang pertama biaya langsung (direct cost) yaitu semua biaya yang berkaitan dengan proses pelaksanaan [12]. Kedua biaya tidak langsung (*indirect cost*) yaitu biaya pengawasan, pengarahan kerja, pengeluaran umum antara lain, biaya manajemen proyek, tagihan pajak, biaya perizinan, asuransi, administrasi, ATK, dan keuntungan/profit [13], [14].

2.2 Penjadwalan Proyek

Disamping anggaran dan mutu, penjadwalan diperlukan untuk menunjukkan hubungan antar kegiatan dan sebagai alat untuk menentukan kapan mulai dan selesainya kegiatan serta menjadi salah satu indikasi yang menjadi tolak ukur keberhasilan suatu proyek konstruksi [6], [15], [16]. Beberapa metode penjadwalan proyek diuraikan sebagai berikut:

- A. Gantt Chart merupakan alat yang digunakan untuk mempresentasikan informasi waktu yang terdiri dari waktu mulai, jumlah waktu dan waktu selesai tentang rencana kegiatan serta dapat digunakan untuk investasi perencanaan dan perencanaan tindakan [17]–[19]. Metode network (jaringan) digunakan untuk memperlihatkan urutan pekerjaan secara keseluruhan [19].
- B. *Program Evaluation and Review Technique* (PERT) merupakan ketergantungan antar kegiatan yang digambarkan dalam bentuk diagram *network* untuk memperkirakan probabilitas penyelesaian proyek, namun sulit untuk memperkirakan waktu merupakan kelemahan utama metode PERT [16], [20], [21].
- C. Critical Path Method (CPM) adalah prediksi dari hubungan yang logis antara kegiatan dan durasi tugas tertentu, kesalahan yang jelas dapat diidentifikasi dan dikoreksi selama pengembangan jadwal awal karena untuk menentukan jalur kritis, ada lima parameter yang dipertimbangkan untuk setiap kegiatan termasuk waktu mulai dan waktu selesai paling awal, waktu mulai dan waktu selesai paling akhir serta slack time [22]–[24].
- D. Precedence Diagram Method (PDM) merupakan metode jaringan yang termasuk dalam klasifikasi AON (Activity On Node) dengan kegiatan yang dituliskan di dalam node segi empat, sedangkan anak panahnya sebagai penunjuk hubungan antara kegiatan-kegitan yang bersangkutan [25], [26]. PDM juga mendapatkan popularitas diantara para pengguna jaringan lintasan kritis untuk melakukan penjadwalan dikarenakan suatu kegiatan dapat dikerjakan tanpa harus menunggu kegiatan pendahulunya selesai 100% [18], [27].



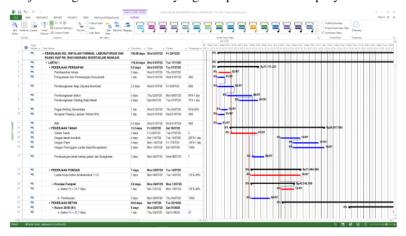
2.3 Time Cost Trade Off

Time Cost Trade Off merupakan pertukaran antara waktu dan biaya, dapat dilakukan dengan cara menerapkan sumber daya tambahan, lembur atau subkontrak tugas yang akan mempengaruhi pada waktu penyelesaian proyek serta biaya proyek [8], [9]. Ada beberapa cara yang digunakan untuk melakukan percepatan proyek antara lain, penambahan jumlah jam kerja (lembur), penambahan tenaga kerja, pergantian atau penambahan peralatan, pemilihan sumber daya manusia yang berkualitas, dan penggunakan metode konstruksi yang efektif.

2.4 Alur Penelitian

Tahapan dalam kegiatan pelaksanaan penelitian diuraikan pada bagan alur berikut:

Sumber: Analisis Peneliti.


Gambar 1. Bagan Alur Penelitian.

Pada Gambar 1. merupakan alur penelitian mulai dari studi literatur, pengumpulan data. Data yang digunakan merupakan data sekunder yang terdiri dari jadwal rencana dan RAB. Kemudian dilanjutkan proses penginputan dan pengolahan data pada software khusus penjadwalan Miscosoft Project untuk menyusun jaringan kerja. Dilanjutkan dengan menentukan kegiatan yang berada pada lintasan kritis. Menjalankan software Microsoft Project 2013 - Menentukan tanggal mulai proyek (Tab Project - Pilih Project Information) - Mengatur hari dan jam kerja proyek (Tab Project - Change Working Time - Pilih Work Weeks -Kemudian tentukan jam kerja dan hari libur setiap minggunya) - Memasukkan data-data jenis pekerjaan ke dalam task name - Memasukkan durasi waktu pekerjaan - Mengisikan daftar sumber daya pada resource sheet - Memasukkan hubungan ketergantungan kegiatan ke dalam kolom predecessors - Menugaskan sumber daya pada resource name - Lintasan kritis dapat dilihat dengan cara : Tab View - Pilih Table pada kategori Data - Pilih Schedule. Menghitung biaya normal proyek, kemudian menghitung durasi waktu dan biaya proyek dipercepat. Selanjutnya menghitung Crashing Cost dalam penambahan tenaga kerja (sistem shift kerja). Selesai pada tahap ini berisi tentang kesimpulan dan saran tentang percepatan menggunakan metode trade cost trade off dengan sistem shift kerja.

3. Hasil dan Pembahasan

3.1 Hubungan Antar Pekerjaan

Pembuatan hubungan antar pekerjaan (*predecessor* dan *successor*) digambarkan dengan *network diagram* dengan menggunakan bantuan *software* khusus penjadwalan *Miscrosoft Project* dengan durasi normal yang didapatkan dari data proyek.

Sumber: Dokumentasi Peneliti.

Gambar 2. Network Diagram Miscrosoft Project 2013.

Pada **Gambar 2.** merupakan *network diagram* yang dihasilkan setelah menambahkan *predecessor* dan *successor* pada setiap uraian pekerjaan yang berada pada kolom *task name*. Garis atau *chart* warna biru menunjukkan kegiatan yang tidak berada pada jalur krits. Garis atau *chart* warna hitam menunjukkan total lama suatu kegiatan atau pekerjaan. Garis atau *chart* warna merah menunjukkan kegiatan yang berada pada jalur kritis.

Dari diagram proyek tersebut menunjukkan bahwa tiap-tiap pekerjaan memiliki hubungan antar pekerjaan sehingga lintasan kritis pada pekerjaan dapat ditentukan.

3.2 Menentukan Jalur Kritis

Perhitungan jalur kritis didasarkan pada perhitungan PDM (*Precedence Diagram Method*) dengan tampilan *gantt chart* yang telah disempurnakan pada *software Microsoft Project* 2013. Untuk hasil pekerjaan yang berada pada jalur kritis dapat dilihat pada **Tabel 1.** dan **Tabel 2.** berikut.

Tabel 1. Pekerjaan yang Berada Pada Jalur Kritis

ID	Task Name	Volume	Sat.	Critical	Duration
2	LANTAI 1				
23	PEKERJAAN BETON				
24	Kolom 30/50 (K1)				
25	a. Beton f'c = $21,7$ Mpa	12,95	m3	Yes	5 days
26	b. Pembesian	2292,63	kg	Yes	6 days
27	c. Bekisting	138,17	m2	Yes	7 days
28	Kolom 30/40 (K2)				
29	a. Beton f'c = $21,7$ Mpa	4,26	m3	Yes	6 days
30	b. Pembesian	790,49	kg	Yes	6 days
31	c. Bekisting	49,78	m2	Yes	7 days
32	Kolom 30/30 (K3)				
33	a. Beton f'c = $21,7$ Mpa	3,12	m3	Yes	5 days
34	b. Pembesian	598,32	kg	Yes	6 days
35	c. Bekisting	30,48	m2	Yes	7 days
36	Kolom 20/50 (K4)				
37	a. Beton $f'c = 21,7 \text{ Mpa}$	3,85	m3	Yes	6 days
38	b. Pembesian	717,22	kg	Yes	6 days
39	c. Bekisting	53,95	m2	Yes	7 days
40	Kolom 15/50 (K5)				
41	a. Beton f'c = $14,5$ Mpa	3,35	m3	Yes	4 days
42	b. Pembesian	638,66	kg	Yes	6 days
43	c. Bekisting	58,08	m2	Yes	7 days
44	Kolom Praktis 11/11	222	m'	Yes	3 days

Sumber: Data Diolah (2021).

Tabel 2. Pekerjaan yang Berada Pada Jalur Kritis

ID	Task Name	Volume	Sat.	Critical	Duration
45	Sloof 20/30				
47	b. Pembesian	1882,05	kg	Yes	6 days
48	c. Bekisting	148,98	m2	Yes	8 days
49	Sloof 15/30				
51	b. Pembesian	427,59	kg	Yes	7 days
53	Balok Induk 25/50 (B1)				
56	c. Bekisting	104,33	m2	Yes	9 days
57	Balok Induk 25/40 (B2)				
59	b. Pembesian	1949,03	kg	Yes	7 days
60	c. Bekisting	86,75	m2	Yes	8 days
61	Balok 20/30 (B3)				
63	b. Pembesian	668,71	kg	Yes	6 days
64	c. Bekisting	41,37	m2	Yes	7 days
78	Plat Beton Lantai 12cm				
79	a. Beton f 'c = 21,7 Mpa	66,54	m3	Yes	1 day
80	b. Pembesian	7640,11	kg	Yes	10 days
81	c. Bekisting	554,54	m2	Yes	11 days
183	LANTAI 2				
186	PEKERJAAN BETON				
187	Kolom 30/50 (K1)				
189	b. Pembesian	162,26	kg	Yes	4 days
191	Kolom 30/40 (K2)				
192	a. Beton f 'c = 21,7 Mpa	9,96	m3	Yes	6 days
193	b. Pembesian	1585,19	kg	Yes	5 days
194	c. Bekisting	116,2	m2	Yes	6 days
195	Kolom 30/30 (K3)				
197	b. Pembesian	329,13	kg	Yes	4 days
199	Kolom 20/40 (K6)				
200	a. Beton f 'c = 21,7 Mpa	0,85	m3	Yes	5 days
201	b. Pembesian	170,32	kg	Yes	5 days
202	c. Bekisting	12,78	m2	Yes	6 days
204	Balok 20/30 (B3)				
206	b. Pembesian	1788,09	kg	Yes	6 days
208	Balok 10/15				
210	b. Pembesian	85,32	kg	Yes	5 days
217	Ring Balk 15/25				
219	b. Pembesian	481,33	kg	Yes	4 days
221	Ring Balk 15/40		-		•
223	b. Pembesian	295,2	kg	Yes	4 days
225	Plat Atap 10 cm		Č		•
226	a. Beton $f'c = 21,7 \text{ Mpa}$	38,47	m3	Yes	1,5 days
227	b. Pembesian	3733,99	kg	Yes	7 days
228	c. Bekisting	384,74	m2	Yes	8 days

Sumber: Data Diolah (2021).

Mengurangi Durasi Pelaksanaan Proyek Dengan Menggunakan Metode Time Cost Trade Off http://dx.doi.org/ 10.30737/jurmateks © 2021 JURMATEKS. Jurnal Manajemen & Teknik Sipil. All rights reserved.

Dari data tersebut dapat diketahui bahwa kolom ID menunjukkan urutan kegiatan yang secara default ditampilkan pada *software Miscrosoft Project*. Kolom *Task Name* menunjukkan uraian pekerjaan pada proyek, pada bagian sebelah kanan kolom *task name* menunjukkan total volume pada uraian pekerjaan tersebut. Kolom *Critical* dengan uraian yes menunjukkan bahwa pekerjaan/kegiatan tersebut berada pada jalur kritis dengan durasi normal yang berada pada kolom Duration.

Dari **Tabel 1.** Dan **Tabel 2.** Di atas menunjukkan bahwa beberapa pekerjaan berada pada jalur kritis yang ditandai dengan uraian yes pada kolom critical sehingga dilakukan analisis percepatan pada pekerjaan-pekerjaan yang berada pada jalur kritis.

3.3 Hasil Analis Percepatan

Pada proyek Pembangunan IGD, Instalasi Farmasi, Laboratorium dan Ruang Inap RS. Bhayangkara Nganjuk, Jawa Timur, teknik percepatan proyek dilakukan menggunakan metode time cost trade off dengan waktu kerja 8 jam setiap shift. Shift pertama mulai pukul 08:00 - 17.00 dengan istirahat 1 jam pada pukul 12:00 - 13:00, shift kedua dilakukan mulai pukul 19:00 - 04:00 dengan istirahat 1 jam pada pukul 00:00 - 01:00. Berikut contoh perhitungan untuk pekerjaan beton f'c = 21,7 Mpa Kolon 30/50 (K1):

```
1. Jumlah tenaga kerja = Koefisien x Volume pekerjaan

Pekerja = 1,65 \times 12,95 = 21,37 \text{ orang}

Tukang = 0,275 \times 12,95 = 3,56 \text{ orang}

Kepala tukang = 0,028 \times 12,95 = 0,36 \text{ orang}

Mandor = 0,083 \times 12,95 = 1,07 \text{ orang}
```

2. Produktivitas tenaga kerja perhari = 1/Koefisien tenaga kerja

Pekerja	= 1:1,65	$= 0,61 \text{ m}^3/\text{hari}$
Tukang	= 1:0,275	$= 3,64 \text{ m}^3/\text{hari}$
Kepala tukang	= 1:0,028	$= 35,71 \text{ m}^3/\text{hari}$
Mandor	= 1:0,083	$= 12,05 \text{ m}^3/\text{hari}$

3. Jumlah tenaga kerja per hari = Volume/(Produktivitas tenaga kerja x Durasi)

```
Pekerja = 12,95/(0,61 \times 5) = 4,27 \text{ OH}

Tukang = 12,95/(3,64 \times 5) = 0,71 \text{ OH}

Kepala tukang = 12,95/(35,71 \times 5) = 0,07 \text{ OH}

Mandor = 12,95/(12,05 \times 5) = 0,21 \text{ OH}
```

4. Produktivitas Kerja

Produktivitas Normal = Volume pekerjaan : Durasi Normal

= 12.95:5

 $= 2.59 \text{ m}^3/\text{hari}$

Produktivitas percepatan = Produktivitas Normal x 2

 $= 2.59 \times 2$

 $= 5,18 \text{ m}^3/\text{hari}$

5. Durasi Percepatan

Durasi Percepatan = Volume pekerjaan : Produktivitas percepatan

= 12,95:5,18

= 2.5 hari

6. Biaya Percepatan (Crash Cost)

Shift 1 (Shift Pagi)

Pekerja $= 5 \times Rp. 60.000$ = Rp. 300.000

 $= 1 \times Rp. 72.500$ = Rp. 72.500Tukang

Kepala tukang $= 1 \times Rp. 80.000$ = Rp. 80.000

Mandor $= 1 \times Rp. 90.000$ = Rp. 90.000

Shift 2 (Shift Malam)

Pekerja $= 5 \times Rp. 60.000$ = Rp. 300.000

Tukang $= 1 \times Rp. 72.500$ = Rp. 72.500

 $= 1 \times Rp. 80.000$ Kepala tukang = Rp. 80.000

Mandor $= 1 \times Rp. 90.000$ = Rp. 90.000

Total biaya = Rp. 1.085.000

= Normal cost + (Total penambahan upah x Durasi Biaya percepatan

percepatan)

= Rp. 14.358.208,90 + (Rp. 1.085.000 x 2,5)

= Rp. 17.070.708,90

7. Cost Slope

Biaya percepatan – Biaya Normal

Durasi Normal - Durasi Percepatan

Rp. 17.070.708,90 - Rp. 14.358.208,90 = Rp. 1.085.000

5 - 2.5

Hasil perhitungan $cost\ slope$ selanjutnya ditampilkan pada ${\bf Tabel}\ {\bf 3.}$ berikut:

Tabel 3. Rekapitulasi Perhitungan Cost Slope

	Normal		Percepatan					
ID	Durasi (hari)		Biaya	Durasi (hari)	Biaya		Cost Slope	
24	5	Rp	14.358.209	2,5	Rp	17.070.709	Rp	1.085.000,00
25	6	Rp	36.381.745	3	Rp	39.786.745	Rp	1.135.000,00
26	7	Rp	22.556.391	3,5	Rp	33.178.891	Rp	3.035.000,00
28	6	Rp	4.723.241	3	Rp	6.898.241	Rp	725.000,00
29	6	Rp	12.544.286	3	Rp	14.359.286	Rp	605.000,00
30	7	Rp	8.126.635	3,5	Rp	12.939.135	Rp	1.375.000,00
32	5	Rp	3.459.275	2,5	Rp	5.271.775	Rp	725.000,00
33	6	Rp	9.494.740	3	Rp	11.309.740	Rp	605.000,00
34	7	Rp	4.975.890	3,5	Rp	8.440.890	Rp	990.000,00
36	6	Rp	4.268.657	3	Rp	6.443.657	Rp	725.000,00
37	6	Rp	11.381.564	3	Rp	13.196.564	Rp	605.000,00
38	7	Rp	8.807.391	3,5	Rp	14.039.891	Rp	1.495.000,00
40	4	Rp	3.426.243	2	Rp	4.876.243	Rp	725.000,00
41	6	Rp	10.134.896	3	Rp	11.949.896	Rp	605.000,00
42	7	Rp	9.481.618	3,5	Rp	14.714.118	Rp	1.495.000,00
43	3	Rp	19.333.314	1,5	Rp	23.450.814	Rp	2.745.000,00
45	6	Rp	29.866.251	3	Rp	54.601.251	Rp	8.245.000,00
47	8	Rp	15.641.261	4	Rp	24.701.261	Rp	2.265.000,00
49	7	Rp	6.785.426	3,5	Rp	13.610.426	Rp	1.950.000,00
53	9	Rp	17.376.266	4,5	Rp	25.836.266	Rp	1.880.000,00
57	7	Rp	30.929.157	3,5	Rp	56.759.157	Rp	7.380.000,00
59	8	Rp	14.448.299	4	Rp	21.968.299	Rp	1.880.000,00
61	6	Rp	10.611.759	3	Rp	20.211.759	Rp	3.200.000,00
63	7	Rp	6.890.215	3,5	Rp	10.775.215	Rp	1.110.000,00
78	1	Rp	73.775.693	0,5	Rp	82.453.193	Rp	17.355.000,00
79	10	Rp	121.240.906	5	Rp	130.890.906	Rp	1.930.000,00
80	11	Rp	113.098.988	5,5	Rp	152.836.488	Rp	7.225.000,00
187	4	Rp	2.574.904	2	Rp	3.784.904	Rp	605.000,00
191	6	Rp	11.043.070	3	Rp	13.578.070	Rp	845.000,00
192	5	Rp	25.155.380	2,5	Rp	27.992.880	Rp	1.135.000,00
193	6	Rp	18.969.766	3	Rp	27.714.766	Rp	2.915.000,00
195	4	Rp	5.222.964	2	Rp	6.432.964	Rp	605.000,00
199	5	Rp	942.431	2,5	Rp	2.454.931	Rp	605.000,00
200	5	Rp	2.702.808	2,5	Rp	4.215.308	Rp	605.000,00
201	6	Rp	2.086.348	3	Rp	4.261.348	Rp	725.000,00
204	6	Rp	28.375.200	3	Rp	31.780.200	Rp	1.135.000,00
208	5	Rp	1.353.943	2,5	Rp	2.866.443	Rp	605.000,00
217	4	Rp	7.638.226	2	Rp	8.848.226	Rp	605.000,00
221	4	Rp	4.684.529	2	Rp	5.894.529	Rp	605.000,00
225	1,5	Rp	42.653.305	0,75	Rp	47.918.305	Rp	7.020.000,00
226	7	Rp	59.254.687	3,5	Rр	64.154.687	Rр	1.400.000,00
227	8	Rp	78.468.108	4	Rp	105.828.108	Rp	6.840.000,00

Sumber: Data Diolah (2021).

Mengurangi Durasi Pelaksanaan Proyek Dengan Menggunakan Metode Time Cost Trade Off http://dx.doi.org/ 10.30737/jurmateks © 2021 JURMATEKS. Jurnal Manajemen & Teknik Sipil. All rights reserved.

Berikut disajikan tabel rekapitulasi perbandingan durasi dan biaya proyek normal dengan durasi dan biaya proyek setelah dipercepat.

Tabel 4. Rekapitulasi Perbandingan Durasi dan Biaya Proyek

	Durasi (hari)	Direct Cost	Indirect Cost		Total Biaya	
Proyek Normal	180	Rp 3.133.528.200	Rp	348.169.800	Rp 3.481.698.000	
Proyek Dipercepat	126	Rp 3.581.043.000	Rp	292.462.632	Rp 3.873.505.632	

Sumber: Data Diolah (2021).

Dari hasil analisis percepatan yang dilakukan, ternyata durasi proyek dapat dipercepat menjadi 126 hari dengan menerapkan sistem *shift* kerja atau lebih cepat 25,71% dari durasi normal 180 hari. Namun setelah dilakukan percepatan terbukti bahwa biaya langsung (*direct cost*) mengalami perubahan dari Rp. 3.133.528.200,00 menjadi Rp. 3.581.043.000,00. Dan berpengaruh juga terhadap biaya tidak langsung (*indirect cost*) yang semula Rp. 348.169.800,00 menjadi Rp. 292.462.632,00.

4. Kesimpulan

Berdasarkan hasil analisis dan pembahasan yang telah diuraikan sebelumnya, dalam penelitian ini dapat ditarik kesimpulan tentang hasil dari percepatan terhadap Proyek Pembangunan IGD, Instalasi Farmasi, Laboratorium dan Ruang Inap RS. Bhayangkara Nganjuk sebagai berikut:

- 1. Total biaya proyek pada kondisi normal sebesar Rp 3.481.698.000,00 dengan durasi pelaksanaan proyek selama 180 hari kerja. Dari hasil analisis pada penelitian ini didapat total biaya proyek setelah percepatan sebesar Rp 3.873.505.632,00 atau lebih mahal 11,25% dari total biaya proyek pada kondisi normal dengan durasi pelaksanaan proyek selama 126 hari.
- 2. Dari segi total biaya proyek, penerapan percepatan dengan sistem shift kerja mengalami kenaikan biaya sebesar 11,25% atau Rp. 391.807.632 lebih mahal dari total biaya proyek pada kondisi normal. Untuk durasi penyelesaian proyek, percepatan proyek mengalami percepatan 25,71% lebih cepat dari durasi proyek normal. Percepatan proyek dengan sistem shift kerja ini hanya merupakan sebuah alternatif jika keterlambatan yang terjadi dapat memicu denda yang sudah tertera dalam kontrak sebelumnya.

5. Ucapan Terima Kasih

Peneliti mendukung Universitas Kadiri, khususnya kepada Fakultas Teknik yang telah memberikan kesempatan untuk melakukan penelitian dan penyusunan laporan.

Daftar Pustaka

- [1] B. Zakariyya, A. Ridwan, and S. Suwarno, "Analisis Biaya Dan Jadwal Proyek Pembangunan Gedung Dinas Kesehatan Kabupaten Trenggalek Dengan Metode Earned Value," *J. Manaj. Teknol. Tek. Sipil*, vol. 3, no. 2, p. 362, 2020, doi: 10.30737/jurmateks.v3i2.1197.
- [2] H. Prasetiawan, A. Ridwan, and Y. Cahyo, "Evaluasi Pengendalian Mutu Pada Proyek Pembangunan Obyek Wisata Sedudo Di Kabupaten Nganjuk," *J. Manaj. Teknol. Tek. Sipil*, vol. 2, no. 1, p. 65, 2019, doi: 10.30737/jurmateks.v2i1.392.
- [3] R. Atkinson, "Project management: Cost, time and quality, two best guesses and a phenomenon, its time to accept other success criteria," *Int. J. Proj. Manag.*, vol. 17, no. 6, pp. 337–342, 1999, doi: 10.1016/S0263-7863(98)00069-6.
- [4] P. P. Control, P. M. Performance, and D. Contexts, "Project Portfolio Control and Portfolio," *Proj. Manag. J.*, vol. 39, no. October, pp. 28–42, 2008, doi: 10.1002/pmj.
- [5] A. Frederika, "Analisis Percepatan Pelaksanaan Dengan Menambah Jam Kerja Optimum Pada Proyek Konstruksi (Studi Kasus: Proyek Pembangunan Super Villa, Peti Tenget-Badung)," J. Ilm. Tek. Sipil, vol. 14, no. 2, pp. 113–126, 2010.
- [6] R. Hidayah, A. Ridwan, and Y. Cahyo, "Analisa Perbandingan Manajemen Waktu Antara Perencanaan dan Pelaksanaan," *J. Manaj. Teknol. Tek. Sipil*, vol. 1, no. 2, pp. 281–290, 2015.
- [7] W. R. Putra, A. Ridwan, Y. Cahyo, and A. I. Candra, "Studi Pelaksanaan Kinerja Percepatan Waktu Pada Proyek Pembangunan Gedung Bank Darah Rumah Sakit Dr. Soedomo," *J. Manaj. Teknol. Tek. Sipil*, vol. 3, no. 1, pp. 76–85, 2020, doi: 10.30737/jurmateks.v3i1.892.
- [8] M. R. Priyo, Mandiyo dan Aulia, "Aplikasi Metode Time Cost Trade Off Pada Proyek Konstruksi: Studi Kasus Proyek Pembangunan Gedung Indonesia," *Semesta Tek.*, vol. 18, no. 1, pp. 30–43, 2016.
- [9] N. G. Hall, "Project management: Recent developments and research opportunities," J. Syst. Sci. Syst. Eng., vol. 21, no. 2, pp. 129–143, 2012, doi: 10.1007/s11518-012-5190-5.
- [10] M. Priyo and A. Sumanto, "Analisis Percepatan Waktu Dan Biaya Proyek Konstruksi Dengan Penambahan Jam Kerja (Lembur) Menggunakan Metode Time Cost Trade Off: Studi Kasus Proyek Pembangunan Prasarana Pengendali Banjir," *Semesta Tek.*, vol. 19, no. 1, pp. 1–15, 2016.
- [11] P. Olivia et al., "Analisa Percepatan Waktu Proyek Menggunakan Metode Crashing

- (Studi Kasus: Peningkatan Jalan Pelantaran Parenggean Tumbang Sangai)," *J. Tek. J. Teor. dan Terap. Bid. Keteknikan*, vol. 3, no. 1, pp. 41–52, 2019.
- [12] D. Sudarsana, "Pengendalian Biaya Dan Jadual Terpadu Pada Proyek Konstruksi.," *J. Ilm. Tek. Sipil*, vol. 12, no. 2, pp. 117–125, 2008.
- [13] A. W. Laksana, H. S. Prasetyo, M. A. Wibowo, and A. Hidayat, "Optimalisasi Waktu dan Biaya Proyek dengan Analisa Crash Program," *J. Karya Tek. Sipil*, vol. 3, no. 3, pp. 747–759, 2014.
- [14] A. Husen, "Manajemen Proyek," Yogyakarta Andi Offset, 2009.
- [15] M. Talomau, "Kajian Metode Penjadwalan Proyek Konstruksi," 2018.
- [16] M. Kholil, B. Nurul Alfa, and M. Hariadi, "Scheduling of House Development Projects with CPM and PERT Method for Time Efficiency (Case Study: House Type 36)," *IOP Conf. Ser. Earth Environ. Sci.*, vol. 140, no. 1, 2018, doi: 10.1088/1755-1315/140/1/012010.
- [17] H. Maylor, "Beyond the Gantt chart:: Project management moving on," Eur. Manag. J., vol. 19, no. 1, pp. 92–100, 2001, doi: 10.1016/S0263-2373(00)00074-8.
- [18] P. L. A. Luthan, "Progress Report Di era Industri 4.0:(Aplikasi MS. Project)," *Deepublish*, 2019.
- [19] C. Genua, S. Giuffrida, and S. Rinaudo, "Gantt charts for production flow' framework," IFAC Proc. Vol., vol. 12, no. PART 1, 2006, doi: 10.3182/20060517-3-fr-2903.00350.
- [20] A. Oktavia and M. Rompis, "Optimasi Waktu Proyek Dengan Penambahan Jam Kerja Menggunakan Precedence Diagram Method Pada Proyek Rehabilitasi Puskesmas Minanga," J. Sipil Statik, vol. 7, no. 9, 2019.
- [21]. Wayne D Cottrell, "Simplified Program Evaluation and Review Technique (PERT)," Constr. Eng. Manag., vol. 125, no. February, pp. 16–22, 1999.
- [22] J. R. San Cristobal, "Critical Path Definition Using Multicriteria Decision Making: PROMETHEE Method," J. Manag. Eng., vol. 29, no. 2, pp. 158–163, 2013, doi: 10.1061/(asce)me.1943-5479.0000135.
- [23] M. F. Nagata, W. A. Manginelli, J. S. Lowe, and T. J. Trauner, *Delay Analysis Using Critical Path Method Schedules*. 2018.
- [24] J. C. Livengood, "Use of Project Schedules and the Critical Path Method in Claims," Constr. Contract Claims, Chang. Disput. Resolut., pp. 175–200, 2016, doi: 10.1061/9780784414293.ch08.

- [25] J. D. Wiest, "Precedence diagramming method: Some unusual characteristics and their implications for project managers," *J. Oper. Manag.*, vol. 1, no. 3, pp. 121–130, 1981, doi: 10.1016/0272-6963(81)90015-2.
- [26] A. D. Susanto and O. S. Suharyo, "the Optimization of Multipurpose Building Development on Project Scheduling Using Precedence Diagram Method (Pdm)," *Int. J. ASRO*, vol. 9, no. 1, pp. 1–7, 2018.
- [27] S. Zareei, "Project scheduling for constructing biogas plant using critical path method," *Renew. Sustain. Energy Rev.*, vol. 81, no. August 2017, pp. 756–759, 2018, doi: 10.1016/j.rser.2017.08.025.

ORIGINALITY REPORT

19% SIMILARITY INDEX

MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED)

★eprints.uns.ac.id

1%

Internet

EXCLUDE QUOTES ON EXCLUDE BIBLIOGRAPHY ON

EXCLUDE MATCHES

OFF