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Accurately predicting concrete compressive strength is 

fundamental for optimizing mix designs, ensuring structural 

integrity, and advancing sustainable construction practices. 

Increased demands for safer, more durable infrastructure 

necessitate effective predictive concrete compressive strength 

models. This research aims to compare the effectiveness of six 

machine learning models such as Linear Regression, Random 

Forest, Support Vector Regression (SVR), K-Nearest Neighbors 

(KNN), Gradient Boosting, and XGBoost to predict concrete 

compressive strength. Used a dataset of 1030 instances with 

varying mixture compositions, conducted extensive exploratory 

data analysis, and applied feature engineering and data scaling 

to enhance model performance. Assessments were performed 

with a 5-fold cross-validation approach with the R-squared (R²) 

metric. In addition, the SHAP value is used to understand the 

influence of each feature on the compressive strength results. 

The results revealed that XGBoost significantly outperformed 

other models, achieving an average R² value of 0.9178 with a 

standard deviation of 0.0296. Notably, Random Forest and 

Gradient Boosting also demonstrated robust capabilities. Based 

on our experiment, these models effectively predicted 

compressive strengths close to actual measured values, 

confirming their practical applicability in civil engineering. 

SHAP values provided insights into the significant impact of age 

and cement quantity on model outputs. These results highlight 

the advanced ensemble methods' effectiveness in concrete 

compressive strength prediction and underscore the importance 

of feature engineering in enhancing model accuracy. 
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1. Introduction 

Concrete is a quintessential material in civil engineering, holds the civilization's 

infrastructure in its robust, unyielding grip [1]–[3]. The spectrum of its applications, spanning 

 

 
Available Online at  

https://ojs.unik-kediri.ac.id/index.php/ukarst/index 
 

https://dx.doi.org/10.30737/ukarst.v8i1.5532 
 

U KaRsT 

https://dx.doi.org/10.30737/ukarst.v8i1.5532
https://dx.doi.org/10.30737/ukarst.v8i1.5532
mailto:gregorius.airlangga@atmajaya.ac.id
https://ojs.unik-kediri.ac.id/index.php/ukarst/index
https://dx.doi.org/10.30737/ukarst.v8i1.5532
https://dx.doi.org/10.30737/ukarst.v8i1.5532


U Karst                                                      ISSN (Online) 2581-2157                                           

Volume 08 Number 01 Year 2024                                                                                                       ISSN (Print)   2502-9304 

Comparison of Predictive Modelling Concrete Compressive Strength with Machine Learning Approaches 

https://dx.doi.org/10.30737/ukarst.v8i1.5532 

 

bridges, skyscrapers, tunnels, and highways, underscores its pivotal role in development [4]–

[6]. However, its compressive strength is the core attribute underpinning its universal 

application [7]–[9]. The concrete compressive strength, a paramount indicator of the structural 

integrity and longevity of constructions, is a non-linear function of its age and composition 

[10]–[12]. This intricate dependency on various factors, including cement, blast furnace slag, 

fly ash, water, superplasticizer, coarse aggregate, and fine aggregate, alongside the curing 

period, delineates the complexity of predicting concrete's compressive strength [13]. The 

urgency for accurate predictions stems from the escalating demand for sustainable construction 

practices [14]. Modern engineering projects necessitate materials that exhibit superior 

performance, are resource-efficient and are environmentally friendly. Optimizing concrete 

mixes to achieve desired strength outcomes without excess material use becomes imperative 

[15]. Thus, predicting concrete strength accurately is not merely an academic exercise but a 

practical necessity that echoes the broader call for sustainable development in the construction 

industry. 

Historically, the quest to predict concrete compressive strength has traversed through 

empirical models based on laboratory experiments to sophisticated statistical analyses [16]. 

Initial efforts heavily relied on trial and error, with mixed designs adjusted based on iterative 

testing. However, this foundational approach proved time-consuming and resource-intensive 

[17]–[19]. The advent of computational models marked a paradigm shift, allowing for the 

exploration of complex relationships between mix ingredients and compressive strength [20]–

[22]. The literature abounds with studies employing various statistical and machine-learning 

methods to model concrete strength [23]. The body of research reflects a vibrant exploration of 

computational approaches, from regression analyses to more complex algorithms like artificial 

neural networks, support vector machines, and decision trees [24]. Yet, despite these 

advancements, challenges persist. The inherent variability in raw materials, environmental 

conditions, and mixing processes introduces significant unpredictability, making model 

accuracy and generalizability ongoing concerns [25]. 

The sophistication in concrete compressive strength prediction increasingly gravitates 

towards ensemble methods and advanced machine learning techniques [26]. By leveraging the 

strengths of multiple predictive models, various approaches aim to enhance accuracy and 

robustness [27]. Furthermore, the integration of domain knowledge into computational models 

represents a promising frontier, offering the potential to refine predictions by incorporating 

insights into the chemical and physical interactions within the concrete mix [26], [28], [29]. 
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This research seeks to contribute to the evolving landscape of concrete strength prediction by 

addressing identified gaps in the literature. Specifically, while previous studies have 

demonstrated the efficacy of various predictive models, there remains a need for comprehensive 

comparative analyses that elucidate the relative performance of these models across diverse 

datasets [30], [31]. Moreover, the potential of feature engineering and advanced scaling 

techniques to improve model performance has not been fully explored. Recognizing these gaps, 

our study addresses critical gaps in predicting concrete compressive strength by focusing on the 

comparative effectiveness of various machine learning models and their optimization through 

feature engineering and data scaling.  

The research aims to evaluate the predictive accuracy of models such as linear 

regression, random forest, support vector regression, K-nearest neighbors, gradient boosting, 

and XGBoost. So, how well these models predict concrete strength and determine the impact 

of sophisticated feature engineering and scaling techniques on their performance can be 

ascertained. This is crucial for developing more accurate and adaptable models in civil 

engineering, ensuring the structural integrity and sustainability of concrete constructions. The 

comparative results of six predictive models will explain their relative strengths and weaknesses 

in estimating concrete compressive strength, thereby assisting practitioners and researchers in 

selecting the most suitable models for their specific needs. Additionally, it will show how 

feature engineering and data scaling can significantly improve model accuracy, providing 

insights that guide the enhancement of predictive methods. This dual approach advances our 

understanding of model capabilities in a practical engineering context and promotes the 

refinement of methodologies for greater generalizability and precision in material science 

predictions. 

 

2. Research Method 

2.1 Research Design 

This study employs a quantitative research design focusing on predicting concrete 

compressive strength using various statistical and machine-learning models. The quantitative 

approach is chosen due to the nature of the problem, which involves analyzing numerical data 

related to concrete mixtures and their compressive strength. The research design encompasses 

data collection from existing datasets, preprocessing of data, feature engineering, application 

of multiple predictive models, and evaluation of these models based on their performance 

metrics. The models included in the study are Linear Regression, Random Forest, Support 
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Vector Regression (SVR), K-nearest neighbors (KNN), Gradient Boosting, and XGBoost. This 

comparative approach allows for a robust analysis of each model's efficacy in predicting the 

target variable. 

2.2 Population and Samples 

The population of interest in this study consists of various concrete mixtures, each 

defined by a specific combination of ingredients. The dataset can be downloaded from 

https://www.kaggle.com/datasets/vinayakshanawad/cement-manufacturing-concrete-dataset 

[32], and the dataset comprises 1030 instances of concrete mixtures, including eight quantitative 

input variables: Cement, Blast Furnace Slag, Fly Ash, Water, Superplasticizer, Coarse 

Aggregate, Fine Aggregate, and Age. These variables have been meticulously chosen due to 

their pivotal roles in influencing the concrete's compressive strength, a crucial determinant of 

the material's applicability in diverse construction scenarios. Cement is selected as it acts as the 

primary binder in concrete, directly affecting the mixture's strength and longevity. The 

inclusion of Blast Furnace Slag and Fly Ash as supplementary cementitious materials is 

justified by their ability to enhance the mechanical properties of concrete and its sustainability 

credentials by reducing cement necessity. Water, indispensable for the hydration reaction with 

cement, is measured precisely, as its excess can dilute the concrete mix, adversely impacting 

structural integrity. The superplasticizer is considered for its capacity to enhance mix 

workability without increasing water content, thus allowing for higher compressive strength 

achievements. The choice of coarse and fine aggregate stems from their role as structural fillers, 

which contribute to the mix's volume, affecting its density and strength. Finally, age is 

accounted for due to the significant maturation of concrete strength over time, particularly in 

the initial curing phases, making it a critical factor in the mix's performance evaluation. The 

output variable, concrete compressive strength measured in MPa, serves as a quantifiable metric 

for assessing the efficacy of the mix design. This dataset, therefore, stands as a comprehensive 

representation of the broader population of concrete mixtures used in civil engineering. 

2.3 Instruments 

Several software tools and libraries are utilized for data analysis, including Python (for 

data preprocessing and analysis), Scikit-learn and XGBoost for implementing the machine 

learning models. The SHAP library is used for model interpretability, specifically for 

understanding the impact of each feature on the predictions of the Random Forest model. 
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2.4 Data Analysis 

The analysis begins with an exploratory data analysis (EDA) to understand the 

dataset's characteristics, including the distribution of variables, presence of outliers, and 

potential correlations between features. Following EDA, feature engineering is applied to create 

new features that might improve model performance. Data scaling is performed using 

StandardScaler and MinMaxScaler to normalize the feature values, facilitating more efficient 

learning by the models. For model evaluation, the study employs a cross-validation approach, 

specifically 5-fold cross-validation, to ensure the models' performance is not dependent on a 

particular data partitioning. This approach provides a more generalized performance metric 

across different subsets of the data. The main performance metric used for model evaluation is 

the R-squared (R²) value, which measures the proportion of variance in the compressive 

strength that is predictable from the input features. The methodology culminates in the 

application of RandomizedSearchCV for hyperparameter tuning of the Random Forest model, 

aiming to optimize its performance. Finally, SHAP values are calculated for the Random Forest 

model to interpret the model's predictions and understand the influence of each feature on the 

compressive strength outcome. 

 

3. Results and Discussions 

The R-Square results indicate a notable variance in model performance. XGBoost 

emerged as the front-runner, demonstrating an exemplary average R-squared value of 0.9178, 

which suggests a high predictive capability. This model's performance is particularly 

noteworthy compared to more traditional models, such as Linear Regression, which exhibited 

an average R-squared value of 0.5886, indicating a moderate fit. Gradient Boosting also 

performed robustly, with an R-squared value that signals strong predictive power. The 

performance spectrum of these models underscores the advanced capabilities of ensemble 

learning techniques in capturing complex, non-linear relationships within data. 

A deeper exploration into model interpretability is afforded by SHAP values, which 

reveal the impact of each feature on the model output. For instance, age and cement content 

emerge as significant predictors, reflecting their crucial role in determining concrete strength. 

The distribution of SHAP values for these features indicates their varied influence across 

different observations, providing insights that could guide more nuanced concrete mix designs. 

Expanding upon these findings, the discussion integrates them into the broader landscape of 

civil engineering by exploring their practical implications. The significance of age and cement 
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content in predicting concrete strength underscores the necessity for precise control over these 

variables in mix design and quality assurance processes. Such insights can help engineers 

optimize concrete formulations for specific performance requirements, including durability, 

sustainability, and cost-efficiency.  

Furthermore, understanding the variability in feature influences aids in developing 

more robust construction standards and can contribute to the ongoing advancement of predictive 

modeling applications in civil engineering projects. This integration of machine learning 

insights into practical engineering practices not only enhances the reliability of construction 

materials but also supports the innovation of building techniques that respond to environmental 

and economic pressures. It reflects on how integrating machine learning models, particularly 

those exhibiting high predictive accuracy, can revolutionize material optimization in concrete 

manufacturing. By doing so, it extends beyond the numbers to probe the potential real-world 

impact of these findings, such as reducing material waste and enhancing the durability of 

structures. 

Table 1. Comparison Results of Machine Learning Methods. 

Methods Average R2 

Linear Regression 

 

0.5885913293726979 +/- 

0.048832066348542244 

Random Forest 

 

0.8985148680592616 +/- 

0.02471727390076229 

SVR 

 

0.6108332127739228 +/- 

0.031633314002622946 

KNN 

 

0.672174941010522 +/- 

0.046894492260017094 

Gradient Boosting 

 

0.8928078766409893 +/- 

0.018404399492875638 

XGBoost 0.9177996618927435 +/- 

0.029649696040465096 

Source: Author's Analysis Results (2024). 

As presented in the Table 1, Linear Regression presented an average R² value of 

approximately 0.59 with a standard deviation of 0.049, indicating a moderate fit to the data. 

However, the spread of residuals in the residual plot demonstrates that the model has limitations 

in capturing the complexity of the data, as evidenced by the heteroscedastic pattern – the 

variance of residuals is not constant across the range of fitted values. Furthermore, Random 

Forest and Gradient Boosting models performed significantly better, with average R² values of 

approximately 0.90 and 0.89, respectively. The low standard deviation for these models 
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suggests a consistent performance across different folds in cross-validation. By integrating 

multiple decision trees, these ensemble learning models effectively captured the non-linear 

relationships in the data. 

The Support Vector Regression (SVR) and K-Nearest Neighbors (KNN) models 

yielded average R² values of 0.61 and 0.67, respectively. While outperforming the Linear 

Regression model, these methods did not achieve the high predictive accuracies of the ensemble 

models. The SVR model's performance indicates a limited capacity to manage the multi-

dimensional feature space, and KNN's performance suggests sensitivity to the feature space's 

dimensionality and the scale of the data. The standout performer was the XGBoost model, with 

an impressive average R² value of approximately 0.92, which signifies a superior fit to the 

dataset compared to the other models. The model's ability to leverage gradient boosting and 

tree pruning mechanisms, along with sophisticated handling of missing values and 

regularization to avoid overfitting, contributed to its high performance. 

 
Source: Author's Analysis Results (2024). 

Figure 1. SHAP Results. 

As presented in Figure 1, the SHAP (SHapley Additive exPlanations) summary plot 

provides insights into the feature importance and impact on the model output. In our study, the 

SHAP summary plot for the Random Forest model revealed that age and cement are the most 

influential factors in predicting concrete compressive strength. Higher SHAP values for age 

suggest that longer curing times have a strong positive effect on strength, aligning with the 

understanding that concrete continues to gain strength over time. Similarly, higher cement 

content is positively correlated with strength, which is consistent with the known properties of 

concrete mixtures. Water, slag, and superplasticizer features also show varied impacts on the 
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model output, indicating their roles in the concrete's strength development. Notably, when 

present in lower amounts (indicated by low feature values), the superplasticizer seems to have 

a more negative impact on strength, likely due to its role in reducing water content and thus 

affecting the hydration process. 

This divergence in model efficacy invites a deeper inquiry into the underlying 

dynamics of concrete strength prediction. For instance, SHAP values have illuminated the 

paramount importance of age and cement content as predictors, reinforcing the critical influence 

of these variables on concrete strength. Such insights are consistent with fundamental concrete 

science principles and align with findings from recent studies. For example, research by Dixit 

et al. demonstrated the pronounced impact of curing age on strength development, a 

phenomenon our study corroborates through quantitative analysis [33]. Similarly, the emphasis 

on cement content aligns with Arifuzzaman et al. work, highlighting the material's central role 

in strength attainment [34]. The discussion of these results within the broader landscape of civil 

engineering and material science not only underscores the potential of advanced machine 

learning models in material optimization but also delineates a practical pathway for applying 

these models. The insights gained from this study can directly inform the development and 

refinement of concrete mix designs to enhance the sustainability and durability of concrete 

infrastructures. By integrating predictive modeling techniques into the mix design process, 

engineers can achieve more precise control over material properties, leading to cost-effective 

and environmentally friendly constructions. This approach enables the proactive adjustment of 

mixture components based on predictive outcomes, ensuring that each formulation meets 

specific performance standards while minimizing waste and maximizing resource efficiency. It 

echoes the sentiments of pioneering research in the field, as the work of previous research has 

advocated adopting machine learning techniques in optimizing concrete mix designs [35]–[37]. 

Moreover, the comparative analysis of our results with those of previous studies 

elucidates a significant advancement in predictive model development. While Linear 

Regression has been a staple in earlier research due to its simplicity and interpretability, our 

findings suggest a shift towards more sophisticated models like XGBoost and Random Forest 

for higher accuracy in complex scenarios. This transition mirrors the evolving landscape of 

construction material research, where the demand for precision and efficiency necessitates a 

departure from traditional methodologies. Our investigation's reliance on ensemble models and 

the nuanced understanding facilitated by SHAP analysis not only enriches the existing body of 

knowledge but also offers a practical guide for future concrete mix optimizations. The clear 
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depiction of variable impacts through SHAP values provides a roadmap for adjusting mix 

components to achieve desired strength levels is a strategy for the efficacy of machine learning 

in construction material innovation [38]. 

 
Source: Author's Analysis Results (2024). 

Figure 2. Residual Versus Fitted Plot. 

Figure 2 shows that the results emphasize the capability of ensemble models and 

advanced tree-based algorithms in predicting complex, non-linear relationships inherent in 

construction materials data. The superior performance of Random Forest and XGBoost over 

traditional Linear Regression and simpler machine learning models underscores the importance 

of model selection in predictive analytics for material science. The higher standard deviation in 

the R² values of the Linear Regression model points to potential overfitting or underfitting 

issues. It could also indicate that the assumptions of Linear Regression, such as 

homoscedasticity and linearity, might not hold for this dataset. 

 

4. Conclusion 

The study's findings emphasize the complexity inherent in predicting concrete 

compressive strength and the potential of machine learning models to capture this complexity. 

The superior performance of ensemble methods, particularly XGBoost with an average R² value 

of 0.9178, suggests that these models are more adept at handling the nonlinearity and high 

dimensionality of the problem space. Additionally, the feature impact analysis via SHAP values 

underscores the importance of both quantitative mix components and curing time, providing 

valuable insights for practitioners seeking to optimize concrete formulations for desired 

36 - 41 

https://dx.doi.org/10.30737/ukarst.v8i1.5532
https://dx.doi.org/10.30737/ukarst.v8i1.5532


U Karst                                                      ISSN (Online) 2581-2157                                           

Volume 08 Number 01 Year 2024                                                                                                       ISSN (Print)   2502-9304 

Comparison of Predictive Modelling Concrete Compressive Strength with Machine Learning Approaches 

https://dx.doi.org/10.30737/ukarst.v8i1.5532 

 

strength outcomes. The research contributes to the field by demonstrating the applicability and 

effectiveness of various predictive models, and it also highlights the critical role of feature 

engineering and model interpretability in understanding and improving predictions. Future 

work could explore further optimization of model parameters, integration of additional features 

that may influence concrete strength, and the application of these findings in practical mix 

design and quality control processes. 
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