Keandalan Sistem Instrumentasi dengan Metode Markov Chain

Authors

  • bambang wahyudi Progam Studi Teknik Industri, Fakultas Teknik, Universitas Kadiri
  • Heribertus Budi Santoso Progam Studi Teknik Industri, Fakultas Teknik, Universitas Kadiri
  • Sri Rahayuningsih Progam Studi Teknik Industri, Fakultas Teknik, Universitas Kadiri

DOI:

https://doi.org/10.30737/jatiunik.v5i2.2159

Keywords:

Energy, Facilities, Markov chain

Abstract

The reliability of electrical energy is achieved to minimize outages, periods of outages, the time of completion of outages and the total repair time during the outage. Electrical energy as the main energy and can prosper human life. However, there are factors that determine the ability of improvement in the case of production. The more prosperous the user, the higher the electrical energy used. Advanced industry will not be separated from the use of very large electrical energy to ensure the continuity of production. The purpose of the study is to find out the accuracy of markov chain activities from the reliability aspect and priority of repairing boiler facilities, turbines and generators that have low reliability. The research method used primary 2014 data on boiler, turbine and generator facilities. Analysis using the markov chain method. The study found that boiler facilities had the lowest reliability value of 0.00055, boiler facilities had the least damage value of 0.01111 and turbine facilities had the least severe damage of 0.94577. From the known facilities, initial improvements are preferred to increase the value of the instrumentation system in the Pacitan PLTU.

 

Keandalan energi listrik dicapai untuk meminimasi pemadaman, periode terjadi pemadaman, waktu kecepatan selesai pemadaman dan total waktu perbaikan selama pemadaman berlangsung. Energi listrik sebagai energi paling utama dan dapat mensejahterakan kehidupan manusia. Tetapi, ada faktor yang menentukan kemampuan peningkatan dalam kasus produksi. Semakin sejahtera pengguna, semakin tinggi pula energi listrik yang digunakan. Perindustrian yang maju tidak akan lepas dari penggunaan energi listrik yang sangat besar untuk menjamin kelangsungan produksi. Tujuan penelitian untuk mengetahui akurasi aktivitas markov chain dari aspek keandalan dan prioritas perbaikan fasilitas boiler, turbin dan generator yang memiliki keandalan rendah. Metode penelitian menggunakan data primer tahun 2014 mengenai fasilitas boiler, turbin dan generator. Analisa menggunakan metode markov chain. Penelitian ini mendapat hasil bahwa fasilitas boiler memiliki nilai keandalan paling rendah sebesar 0,00055, fasilitas boiler memiliki nilai kerusakan paling kecil sebesar 0,01111 dan fasilitas turbin memiliki kerusakan berat paling kecil sebesar 0,94577. Dari fasilitas yang telah diketahui, perbaikan awal lebih diutamakan untuk meningkatkan nilai keandalam sistem instrumentasi pada PLTU Pacitan.

Author Biography

Heribertus Budi Santoso, Progam Studi Teknik Industri, Fakultas Teknik, Universitas Kadiri

Teknik Industri, Universitas Kadiri

References

S. D. Anggraini, “Rekayasa Produksi Biodiesel Dari Minyak Kemiri Sunan (Reutialis Trisperma Oil) Sebagai Alternatif Bahan Bakar Mesin Diesel,†JATI UNIK J. Ilm. Tek. dan Manaj. Ind., vol. 2, no. 1, p. 1, 2019, doi: 10.30737/jatiunik.v2i1.272.

S. R. Widodo and H. B. Santoso, “PENGELOLAAN PERSEDIAAN PADA PT. X DENGAN PERMINTAAN STOKASTIK DAN VARIABEL LEAD TIME,†KAIZEN Manag. Syst. Ind. Eng. J., 2018, doi: 10.25273/kaizen.v1i1.2590.

T. Scholz, V. V. Lopes, and A. Estanqueiro, “A cyclic time-dependent Markov process to model daily patterns in wind turbine power production,†Energy, vol. 67, pp. 557–568, 2014, doi: 10.1016/j.energy.2013.12.071.

S. Wei and X. Yanfeng, “Research on China’s energy supply and demand using an improved Grey-Markov chain model based on wavelet transform,†Energy, vol. 118, pp. 969–984, 2017, doi: 10.1016/j.energy.2016.10.120.

Y. Y. Hong, W. C. Chang, Y. R. Chang, Y. Der Lee, and D. C. Ouyang, “Optimal sizing of renewable energy generations in a community microgrid using Markov model,†Energy, vol. 135, pp. 68–74, 2017, doi: 10.1016/j.energy.2017.06.098.

J. Ma, M. Fouladirad, and A. Grall, “Flexible wind speed generation model: Markov chain with an embedded diffusion process,†Energy, vol. 164, pp. 316–328, 2018, doi: 10.1016/j.energy.2018.08.212.

X. dong Liu, F. Pan, L. Yuan, and Y. wang Chen, “The dependence structure between crude oil futures prices and Chinese agricultural commodity futures prices: Measurement based on Markov-switching GRG copula,†Energy, vol. 182, pp. 999–1012, 2019, doi: 10.1016/j.energy.2019.06.071.

M. D. Angelica et al., “Determinants of Time Allocation across the Lifespan A Theoretical Model and an Application to the,†PLoS One, 2012, doi: 10.1017/CBO9781107415324.004.

G. Gozgor, A. K. Tiwari, N. Khraief, and M. Shahbaz, “Dependence structure between business cycles and CO2 emissions in the U.S.: Evidence from the time-varying Markov-Switching Copula models,†Energy, vol. 188, p. 115995, 2019, doi: 10.1016/j.energy.2019.115995.

N. Yang, L. Han, C. Xiang, H. Liu, and X. Li, “An indirect reinforcement learning based real-time energy management strategy via high-order Markov Chain model for a hybrid electric vehicle,†Energy, vol. 236, p. 121337, 2021, doi: 10.1016/j.energy.2021.121337.

C. Sigauke and D. Chikobvu, “Estimation of extreme inter-day changes to peak electricity demand using Markov chain analysis: A comparative analysis with extreme value theory,†J. Energy South. Africa, vol. 28, no. 4, pp. 68–76, 2017, doi: 10.17159/2413-3051/2017/v28i4a2329.

A. Ketata and Z. Driss, “Characterization of double-entry turbine coupled with gasoline engine under in- and out-phase admission,†Energy, vol. 236, p. 121447, 2021, doi: 10.1016/j.energy.2021.121447.

S. Shelat, W. Daamen, B. Kaag, D. Duives, and S. Hoogendoorn, “A Markov-chain Activity-based Model for Pedestrians in Office Buildings,†Collect. Dyn., vol. 5, pp. 423–430, 2020, doi: 10.17815/cd.2020.78.

H. Sarjono, R. Aryanto, and Novie, “The determination of optimal inventory using Markov Chain,†WIT Trans. Inf. Commun. Technol., vol. 49, no. 1, pp. 1147–1157, 2014, doi: 10.2495/ICIE131402.

A. Baghela, “Application of Markov Process to Improve Production of Power Plant,†Int. J. Eng. Adv. Technol., vol. 2, no. 1, pp. 200–203, 2015.

X. Lin, J. Wu, and Y. Wei, “An ensemble learning velocity prediction-based energy management strategy for a plug-in hybrid electric vehicle considering driving pattern adaptive reference SOC,†Energy, vol. 234, p. 121308, 2021, doi: 10.1016/j.energy.2021.121308.

J. D. Urrutia, J. L. Meneses, and G. V. A. Antonio, “Predicting Future Monthly Electricity Consumption in the Philippines using Markov-Chain Grey Model,†Indian J. Sci. Technol., vol. 12, no. 33, pp. 1–44, 2019, doi: 10.17485/ijst/2019/v12i33/145762.

J. M. Colmenar, J. I. Hidalgo, and S. Salcedo-Sanz, “Automatic generation of models for energy demand estimation using Grammatical Evolution,†Energy, vol. 164, pp. 183–193, 2018, doi: 10.1016/j.energy.2018.08.199.

G. Zhang, E. H. Chimowitz, U. States, and U. States, “Energy network optimization using a Markov Chain-Monte Carlo algorithm,†Int. J. Eng. Sci., vol. 11, no. 3, pp. 82–94, 2018.

E. Gubiy, “The Markov chain of energy carryover reserves in models of power supply reliability in remote,†E3S Web Conf., vol. 114, no. 201 9, 2019, doi: 10.1051/e3sconf/201911403004.

V. Janko and M. Luštrek, “Using Markov chains and multi-objective optimization for energy-efficient context recognition,†Sensors (Switzerland), vol. 18, no. 1, 2018, doi: 10.3390/s18010080.

F. Peng et al., “Sequential coalition formation for wind-thermal combined bidding,†Energy, vol. 236, p. 121475, 2021, doi: 10.1016/j.energy.2021.121475.

Downloads

PlumX Metrics

Published

2022-04-19

How to Cite

wahyudi, bambang, Santoso, H. B., & Rahayuningsih, S. (2022). Keandalan Sistem Instrumentasi dengan Metode Markov Chain. JATI UNIK : Jurnal Ilmiah Teknik Dan Manajemen Industri, 5(2), 100–108. https://doi.org/10.30737/jatiunik.v5i2.2159

Issue

Section

Articles