Accuracy of DSM By Using Unmanned Aerial Vehicles on the Downstream of Welang Riverbank, District of Pasuruan, Jawa Timur

Authors

DOI:

https://doi.org/10.30737/ukarst.v5i1.1153

Keywords:

Accuracy, DSM, GCP, UAV.

Abstract

The Digital Surface Model (DSM) is commonly used in studies on flood map modeling. The lack of accurate, high-resolution topography data has hindered flood modeling. The use of the Unmanned Aerial Vehicle (UAV) can help data acquisition with sufficient accuracy. This research aims to provide high-resolution DSM-generated maps by Ground Control Points (GCPs) settings. Improvement of the model's accuracy was pursued by distributing 20 GCPs along the edges of the study area. Agrisoft software was used to generate the DSM. The generated DSM can be used for various planning purposes. The model's accuracy is measured in Root Mean Square Error (RMSE) based on the generated DSM. The RMSE values are 0.488 m for x-coordinates and y-coordinates (horizontal direction) and 0.161 m for z-coordinates (vertical direction).

References

S. Saksena and V. Merwade, ‘Incorporating the effect of DEM resolution and accuracy for improved flood inundation mapping’, J. Hydrol., vol. 530, pp. 180–194, 2015, doi: 10.1016/j.jhydrol.2015.09.069.

J. Vesakoski, P. Alho, J. Hyyppä, M. Holopainen, C. Flener, and H. Hyyppä, ‘Nationwide Digital Terrain Models for Topographic Depression Modelling in Detection of Flood Detention Areas’, pp. 271–300, 2014, doi: 10.3390/w6020271.

I. Indarto and D. Prasetyo, ‘Pembuatan Digital Elevation Model Resolusi 10m dari Peta RBI dan Survei GPS dengan Algoritma ANUDEM’, J. Keteknikan Pertan., vol. 2, no. 1, p. 21955, 2014.

A. N. Safi’i and P. Hartanto, ‘Pembuatan Digital Terrain Model (DTM) dari Light Detection and Ranging (LiDAR) menggunakan Metode Morfologi Sederhana’, Teknik, vol. 40, no. 1, p. 40, 2019, doi: 10.14710/teknik.v40i1.23004.

S. Mourato, P. Fernandez, L. Pereira, and M. Moreira, ‘Improving a DSM Obtained by Unmanned Aerial Vehicles for Flood Modelling’, IOP Conf. Ser. Earth Environ. Sci., vol. 95, no. 2, 2017, doi: 10.1088/1755-1315/95/2/022014.

A. Jebur, F. M. Abed, and M. U. Mohammed, ‘3D City Modelling by Photogrammetric Techniques’, no. July 2019, 2017, doi: 10.13140/RG.2.2.11494.06722.

N. Arsyad, ‘Akurasi Citra data Foto Udara Persimpangan Lalu Lintas Kota Kendari’, Rekayasa Sipil, vol. 14, no. 1, pp. 51–59, 2020.

R. Meiarti, T. Seto, and J. Sartohadi, ‘Uji Akurasi Hasil Teknologi Pesawat Udara Tanpa Awak (Unmanned Aerial Vehicle) Dalam Aplikasi Pemetaan Kebencanaan Kepesisiran’, J. Geogr. Edukasi dan Lingkung., vol. 3, no. 1, p. 1, 2019, doi: 10.29405/jgel.v3i1.2987.

E. Akturk and A. O. Altunel, ‘Accuracy assesment of a low-cost UAV derived digital elevation model (DEM) in a highly broken and vegetated terrain’, Meas. J. Int. Meas. Confed., vol. 136, no. February 2019, pp. 382–386, 2019, doi: 10.1016/j.measurement.2018.12.101.

A. R. Yusoff, M. F. Mohd Ariff, K. M. Idris, Z. Majid, and A. K. Chong, ‘Camera calibration accuracy at different UAV flying heights’, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 42, no. 2W3, pp. 595–600, 2017, doi: 10.5194/isprs-archives-XLII-2-W3-595-2017.

E. Sanz-Ablanedo, J. H. Chandler, J. R. Rodríguez-Pérez, and C. Ordóñez, ‘Accuracy of Unmanned Aerial Vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used’, Remote Sens., vol. 10, no. 10, 2018, doi: 10.3390/rs10101606.

P. Martínez-Carricondo, F. Agüera-Vega, F. Carvajal-Ramírez, F. J. Mesas-Carrascosa, A. García-Ferrer, and F. J. Pérez-Porras, ‘Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points’, Int. J. Appl. Earth Obs. Geoinf., vol. 72, no. May, pp. 1–10, 2018, doi: 10.1016/j.jag.2018.05.015.

V. Casella, F. Chiabrando, M. Franzini, and A. M. Manzino, ‘Accuracy assessment of a UAV block by different software packages, processing schemes and validation strategies’, ISPRS Int. J. Geo-Information, vol. 9, no. 3, 2020, doi: 10.3390/ijgi9030164.

S. K. Nagendran, W. Y. Tung, and M. A. Mohamad Ismail, ‘Accuracy assessment on low altitude UAV-borne photogrammetry outputs influenced by ground control point at different altitude’, IOP Conf. Ser. Earth Environ. Sci., vol. 169, no. 1, 2018, doi: 10.1088/1755-1315/169/1/012031.

A. Jebur, F. Abed, and M. Mohammed, ‘Assessing the performance of commercial Agisoft PhotoScan software to deliver reliable data for accurate3D modelling’, MATEC Web Conf., vol. 162, 2018, doi: 10.1051/matecconf/201816203022.

M. A.- DetikNews, ‘8.740 Rumah di 9 Desa/Kelurahan di Pasuruan Terendam Banjir’, [Online]. Available: https://news.detik.com/berita-jawa-timur/d-3880153/8740-rumah-di-9-desakelurahan-di-pasuruan-terendam-banjir.

S. M. Azmi, B. Ahmad, and A. Ahmad, ‘Accuracy assessment of topographic mapping using UAV image integrated with satellite images’, IOP Conf. Ser. Earth Environ. Sci., vol. 18, no. 1, 2014, doi: 10.1088/1755-1315/18/1/012015.

Badan Informasi Geospasial, PERATURAN BADAN INFORMASI GEOSPASIAL NOMOR 6 TAHUN 2018. 2018.

G. Popescu, D. Iordan, and V. Păunescu, ‘The Resultant Positional Accuracy for the Orthophotos Obtained with Unmanned Aerial Vehicles (UAVs)’, Agric. Agric. Sci. Procedia, vol. 10, pp. 458–464, 2016, doi: 10.1016/j.aaspro.2016.09.016.

E. Yalcin, ‘Two-dimensional hydrodynamic modelling for urban flood risk assessment using unmanned aerial vehicle imagery: A case study of Kirsehir, Turkey’, J. Flood Risk Manag., vol. 12, no. S1, pp. 1–14, 2019, doi: 10.1111/jfr3.12499.

C.-G. Jung and S.-J. Kim, ‘Comparison of the Damaged Area Caused by an Agricultural Dam-Break Flood Wave Using HEC-RAS and UAV Surveying’, Agric. Sci., vol. 08, no. 10, pp. 1089–1104, 2017, doi: 10.4236/as.2017.810079.

PlumX Metrics

Published

2021-04-03

How to Cite

Khaulan, D. W., Hidayah, E., & Halik, G. (2021). Accuracy of DSM By Using Unmanned Aerial Vehicles on the Downstream of Welang Riverbank, District of Pasuruan, Jawa Timur. UKaRsT, 5(1), 49–63. https://doi.org/10.30737/ukarst.v5i1.1153

Issue

Section

Articles