Mapping of Landslide Susceptible Zones by Using Frequency Ratios at Bluncong Subwatershed, Bondowoso Regency
DOI:
https://doi.org/10.30737/ukarst.v5i1.1455Keywords:
Bluncong, DEM, Frequency Ratio, Landslide, Satellite Images.Abstract
Landslides are the disasters that frequently happen in Bluncong sub-watershed. These incidents have caused damage and malfunction of road infrastructure, bridges, and irrigation buildings. Therefore, it is important to anticipate landslides through mapping of landslide-susceptibility areas The objective of this study is to map landslide susceptibility at Bluncong sub watershed, Bondowoso, by using Geographical Information System and remote sensing. The landslide susceptibility analysis and mapping are conducted based on landslide occurrences with the Frequency Ratio approach. The landslide sites are identified from field survey data interpretation. Digital Elevation Model maps, geological data, land uses and rivers data, and Landsat 8 images are collected, processed, and then built into the GIS platform's spatial database. The selected factors that cause landslide occurrences are land use, distance to river, aspect, slope, elevation, curvature, and the vegetation index (NDVI). The results show that the accuracy of the map is acceptable. The frequency ratio model gained the area under curve (AUC) value of 0.79. It is found that 9.08% of the area has very high landslide susceptibility. Local governments can use this study's mapping results to minimize the risk at landslidesusceptible zonesReferences
Y. Wang, Q. Lin, and P. Shi, ‘Spatial pattern and influencing factors of landslide casualty events’, J. Geogr. Sci., vol. 28, no. 3, pp. 259–274, 2018, doi: 10.1007/s11442-018-1471-3.
E. N. C. Perera, D. T. Jayawardana, P. Jayasinghe, R. M. S. Bandara, and N. Alahakoon, ‘Direct impacts of landslides on socio-economic systems: a case study from Aranayake, Sri Lanka’, Geoenvironmental Disasters, vol. 5, no. 1, 2018, doi: 10.1186/s40677-018-0104-6.
H. D. Skilodimou, G. D. Bathrellos, E. Koskeridou, K. Soukis, and D. Rozos, ‘Physical and anthropogenic factors related to landslide activity in the northern Peloponnese, Greece’, Land, vol. 7, no. 3, 2018, doi: 10.3390/land7030085.
S. Bahrami, B. Rahimzadeh, and S. Khaleghi, ‘Analyzing the effects of tectonic and lithology on the occurrence of landslide along Zagros ophiolitic suture: a case study of Sarv-Abad, Kurdistan, Iran’, Bull. Eng. Geol. Environ., vol. 79, no. 3, pp. 1619–1637, 2020, doi: 10.1007/s10064-019-01639-3.
E. Amir Yazdadi and E. Ghanavati, ‘Landslide Hazard Zonation by using AHP ( Analytical Hierarchy Process ) model in GIS ( Geographic Information System ) Environment ( Case study : Kordan Watershed ) Landslide Hazard Zonation by using AHP ( Analytical Hierarchy Process ) model in GIS ( Geo’, vol. 2, no. February, pp. 24–39, 2016.
J. M. Mustafa, S. Sirojuzilam, and N. Sulistiyono, ‘Analisis Tingkat Kerawanan Longsor Dengan Integrasi Analytical Hierarchy Process dan Pemodelan Spasial Sistem Informasi Geografis di Kabupaten Aceh Tenggara’, J. Serambi Eng., vol. 4, no. 1, p. 471, 2019, doi: 10.32672/jse.v4i1.981.
G. Yalcin and Z. Akyurek, ‘Analysing Flood Vulnerable Areas With Multicriteria Evaluation’, Methods, pp. 1–6, 2000.
S. Lee and B. Pradhan, ‘Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models’, Landslides, vol. 4, no. 1, pp. 33–41, 2007, doi: 10.1007/s10346-006-0047-y.
S. Mondal and R. Maiti, ‘Integrating the Analytical Hierarchy Process (AHP) and the frequency ratio (FR) model in landslide susceptibility mapping of Shiv-khola watershed, Darjeeling Himalaya’, Int. J. Disaster Risk Sci., vol. 4, no. 4, pp. 200–212, 2013, doi: 10.1007/s13753-013-0021-y.
H. Khan, M. Shafique, M. A. Khan, M. A. Bacha, S. U. Shah, and C. Calligaris, ‘Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan’, Egypt. J. Remote Sens. Sp. Sci., vol. 22, no. 1, pp. 11–24, 2019, doi: 10.1016/j.ejrs.2018.03.004.
T. D. Acharya and D. H. Lee, ‘Landslide Susceptibility Mapping using Relative Frequency and Predictor Rate along Araniko Highway’, KSCE J. Civ. Eng., vol. 23, no. 2, pp. 763–776, 2019, doi: 10.1007/s12205-018-0156-x.
H. Nugraha, D. Wacano, G. A. Dipayana, A. Cahyadi, B. W. Mutaqin, and A. Larasati, ‘Geomorphometric Characteristics of Landslides in the Tinalah Watershed, Menoreh Mountains, Yogyakarta, Indonesia’, Procedia Environ. Sci., vol. 28, no. SustaiN 2014, pp. 578–586, 2015, doi: 10.1016/j.proenv.2015.07.068.
R. K. Dahal, ‘Landslide hazard mapping in GIS’, vol. 53, pp. 63–91, 2017.
K. C. Devkota et al., ‘Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya’, Nat. Hazards, vol. 65, no. 1, pp. 135–165, 2013, doi: 10.1007/s11069-012-0347-6.
M. Ercanoglu and C. Gokceoglu, ‘Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach’, Environ. Geol., vol. 41, no. 6, pp. 720–730, 2002, doi: 10.1007/s00254-001-0454-2.
D. S. Fernández and M. A. Lutz, ‘Urban flood hazard zoning in Tucumán Province, Argentina, using GIS and multicriteria decision analysis’, Eng. Geol., vol. 111, no. 1–4, pp. 90–98, 2010, doi: 10.1016/j.enggeo.2009.12.006.
A. D. Regmi et al., ‘Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya’, Arab. J. Geosci., vol. 7, no. 2, pp. 725–742, 2014, doi: 10.1007/s12517-012-0807-z.
C. Xu, X. Xu, X. Tan, and R. Yuan, ‘Landslide Hazard Mapping Using GIS and Weight of Evidence Model in Qingshui River Watershed of 2008 Wenchuan Earthquake Struck Region’, no. May 2014, 2012, doi: 10.1007/s12583-012-0236-7.
F. Mancini, C. Ceppi, and G. Ritrovato, ‘GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy’, Nat. Hazards Earth Syst. Sci., vol. 10, no. 9, pp. 1851–1864, 2010, doi: 10.5194/nhess-10-1851-2010.
S. Moradi and M. Rezaei, ‘A GIS-based comparative study of the analytic hierarchy process , bivariate statistics and frequency ratio methods for landslide susceptibility mapping in part of the Tehran metropolis , Iran’, vol. 4, no. 1, pp. 45–61, 2014.
D. Sudiana and E. Diasmara, ‘Analisis Indeks Vegetasi menggunakan Data Satelit’, Semin. Intell. Technol. Its Appl., pp. 423–428, 2008.
A. R. Falahnsia, ‘VEGETASI DENGAN METODE SKORING MENGGUNAKAN CITRA SATELIT DI’, pp. 400–416, 2014.
K. Ullah, J. Zhang, and J. Z. Id, ‘GIS-based flood hazard mapping using relative frequency ratio method: A case study of panjkora river basin, eastern Hindu Kush, Pakistan’, PLoS One, vol. 15, no. 3, pp. 1–18, 2020, doi: 10.1371/journal.pone.0229153.
A. Nertan, G. Stancalie, and F. Serban, ‘Agricultural Drought Monitoring Using Satellite - Based Products in Romania’, no. Ictrs, pp. 100–106, 2014, doi: 10.5220/0005421901000106.
W. M. Abdulwahid and B. Pradhan, ‘Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR)’, Landslides, vol. 14, no. 3, pp. 1057–1076, 2017, doi: 10.1007/s10346-016-0744-0.
A. H. Harsolumakso, D. Noeradi, A. Rudyawan, D. Amiarsa, S. Wicaksono, and A. A. Nurfarhan, ‘Geology of the Eastern Part of the Volcanic-Kendeng Zone of East Java: Stratigraphy, Structures and Sedimentation Review from Besuki and Situbondo Areas’, J. Geol. dan Sumberd. Miner., vol. 20, no. 3, p. 143, 2019, doi: 10.33332/jgsm.geologi.v20i3.465.
B. Pradhan and S. Lee, ‘Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling’, Environ. Model. Softw., vol. 25, no. 6, pp. 747–759, 2010, doi: 10.1016/j.envsoft.2009.10.016.
E. A. C. Abella and C. J. Van Westen, ‘Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation’, Landslides, vol. 4, no. 4, pp. 311–325, 2007, doi: 10.1007/s10346-007-0087-y.
S. Chauhan, M. Sharma, and M. K. Arora, ‘Landslide susceptibility zonation of the Chamoli region, Garhwal Himalayas, using logistic regression model’, Landslides, vol. 7, no. 4, pp. 411–423, 2010, doi: 10.1007/s10346-010-0202-3.
D. W. Hosmer and S. Lemeshow, Applied Logistic Regression, Second. Canada: A Wiley-Interscience Publication, 2000.
Downloads
Published
How to Cite
Issue
Section
License
Authors who publish with this journal agree to the following terms:
(1) The copyright of published articles will be transferred to the journal as the publisher of the manuscript. Therefore, the author needs to confirm that the copyright has been managed by the publisher with the Publication Right Form which must be attached when submitting the article.
(2) Publisher of U Karst is Kadiri University.
(3) The copyright follows Creative Commons Attribution-ShareAlike License (CC BY SA): This license allows to Share copy and redistribute the material in any medium or format, Adapt remix, transform, and build upon the material, for any purpose, even commercially.