Prediction Of Project Schedule Performance Index for Trans South Java Road Project Lot 7 Blitar Regency Using Bayesian Network

Authors

  • Kristya Hadi Wicaksono Department of Civil Engineering, Faculty of Engineering, Jember University, Jember
  • Jojok Widodo Soetjipto Department of Civil Engineering, Faculty of Engineering, Jember University, Jember
  • Gusfan Halik Department of Civil Engineering, Faculty of Engineering, Jember University, Jember

DOI:

https://doi.org/10.30737/ukarst.v7i1.3552

Keywords:

Bayesian Network, Prediction, Schedule Performance Index, Time Schedule

Abstract

The south coast of Indonesia has considerable potential and competitiveness in the field of tourism. This encourages the government to strive to improve tourism infrastructure through the construction of the South Coast Road. In its implementation, project reporting must be measured and controlled to assist project management in identifying problems and factors that affect project activities.  This research aims to identify the most influential factors on Schedule Performance Index and develop a prediction model using the Bayesian Network. 5 main factors that affect project performance, such as Heavy Equipment, materials, Implementation and Work Relations, Labor, and Environment are used to are set 13 scenarios to detect the behavior of each factor appropriately. The factor is confirmed to the respondent to ensure that the factor occurs in the project. The study's results obtained Bayesian Network approach can be used to assess the condition of the JLS Lot 7 Blitar  Schedule Performance Index (SPI) with an accuracy of around 80%. The dominant factor affecting SPI is the condition of the Heavy Equipment.  The condition of the Heavy Equipment will affect the condition of SPI so closely that the contractor must maintain the performance of the heavy equipment so that the project performance is always in good condition. The identification results are expected to help in better decision-making and project risk management.

References

I. dan L. Widiasanti, “Manajemen Konstruksi,” in Manajemen Konstruksi, P. Latifah, Ed. Bandung: PT. Remaja Rosdakarya, 2013, p. 174.

M. Natalia, A. Aguskamar, J. Atmaja, M. Muluk, and D. R. Fitria, “Identifikasi Faktor-Faktor Penyebab Cost Over run Pada Proyek Konstruksi Jalan di Sumatera Barat,” J. Ilm. Rekayasa Sipil, vol. 16, no. 1, pp. 28–38, 2019, doi: 10.30630/jirs.16.1.192.

T. Adenugroho and D. Pontan, “Identification of Dominant Factors Affecting the Successful Development of Highway Construction Projects,” pp. 537–544, 2021.

A. Maddeppungeng, D. E. Intari, and A. Oktafiani, “Studi Faktor Penyebab Keterlambatan Proyek Konstruksi Studi Kasus Proyek Pembangunan 6 Ruas Jalan Tol Dalam Kota Jakarta,” Konstruksia, vol. 11, no. 1, p. 89, 2020, doi: 10.24853/jk.11.1.89-96.

Y. Elfahham, “Estimation and prediction of construction cost index using neural networks, time series, and regression,” Alexandria Eng. J., vol. 58, no. 2, pp. 499–506, 2019, doi: 10.1016/j.aej.2019.05.002.

P. A. de Andrade, A. Martens, and M. Vanhoucke, “Using real project schedule data to compare earned schedule and earned duration management project time forecasting capabilities,” Autom. Constr., vol. 99, no. July 2018, pp. 68–78, 2019, doi: 10.1016/j.autcon.2018.11.030.

S. Sackey, D. E. Lee, and B. S. Kim, “Duration Estimate at Completion: Improving Earned Value Management Forecasting Accuracy,” KSCE J. Civ. Eng., vol. 24, no. 3, pp. 693–702, 2020, doi: 10.1007/s12205-020-0407-5.

Z. Li, T. Wang, W. Ge, D. Wei, and H. Li, “Risk analysis of earth-rock dam breach based on dynamic Bayesian network,” Water (Switzerland), vol. 11, no. 11, pp. 1–14, 2019, doi: 10.3390/w11112305.

O. Kammouh, P. Gardoni, and G. P. Cimellaro, “Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and dynamic Bayesian networks,” Reliab. Eng. Syst. Saf., vol. 198, no. January, p. 106813, 2020, doi: 10.1016/j.ress.2020.106813.

N. Li, X. Feng, and R. Jimenez, “Predicting rock burst hazard with incomplete data using Bayesian networks,” Tunn. Undergr. Sp. Technol., vol. 61, pp. 61–70, 2017, doi: 10.1016/j.tust.2016.09.010.

J. Widodo Soetjipto, T. Joko Wahyu Adi, and N. Anwar, “Dynamic Bayesian updating approach for predicting bridge condition based on Indonesia-bridge management system (I-BMS),” MATEC Web Conf., vol. 195, pp. 0–7, 2018, doi: 10.1051/matecconf/201819502019.

Y. C. Ni and F. L. Zhang, “Fast Bayesian frequency domain modal identification from seismic response data,” Comput. Struct., vol. 212, pp. 225–235, 2019, doi: 10.1016/j.compstruc.2018.08.018.

T. B. Jones, M. C. Darling, K. M. Groth, M. R. Denman, and G. F. Luger, “A dynamic Bayesian network for diagnosing nuclear power plant accidents,” Proc. 29th Int. Florida Artif. Intell. Res. Soc. Conf. FLAIRS 2016, no. Fni, pp. 179–184, 2016.

F. Caron, F. Ruggeri, and B. Pierini, “A Bayesian approach to improving esti`mate to complete,” Int. J. Proj. Manag., vol. 34, no. 8, pp. 1687–1702, 2016, doi: 10.1016/j.ijproman.2016.09.007.

A. B. Broto, “Bridge Health Structure Model Prediction,” 2016.

R. Assaad, I. H. El-Adaway, and I. S. Abotaleb, “Predicting Project Performance in the Construction Industry,” J. Constr. Eng. Manag., vol. 146, no. 5, 2020, doi: 10.1061/(asce)co.1943-7862.0001797.

A. N. Sari, “( Studi Kasus Ruas Jalan Batas Kota Caruban – Batas Kabupaten Nganjuk ),” 2016.

X. Zhang and S. Mahadevan, “Bayesian network modeling of accident investigation reports for aviation safety assessment,” Reliab. Eng. Syst. Saf., vol. 209, p. 107371, 2021, doi: 10.1016/j.ress.2020.107371.

Permen PU No. 07/PRT/M/2011 Buku PK 06A-BAB VII B6 Angka 39.2, “Show Cause Meeting (SCM) Jasa Konstruksi,” pp. 1–4, 2011.

PMBOK Guide 2000 Edition. Newtown Square, Pennsylvania USA: Project Management Institute, Inc. Four Campus Boulevard Newtown Square, Pennsylvania 19073-3299 USA Phone: 610-356-4600 or Visit our website: www.pmi.org E-mail: pmihq@pmi.org ©, 2001.

Brian Kerninghan; Dennis Ritchie, Ed., GeNIe Modeler USER MANUAL Version 4.0.R1. 2022.

Q. Xu and K. Xu, “Risk assessment of rail haulage accidents in inclined tunnels with Bayesian network and bow-tie model,” Curr. Sci., vol. 114, no. 12, pp. 2530–2538, 2018, doi: 10.18520/cs/v114/i12/2530-2538.

M. Zhu, D. Chen, J. Wang, and Y. Sun, “Analysis of oceanaut operating performance using an integrated Bayesian network aided by the fuzzy logic theory,” Int. J. Ind. Ergon., vol. 83, no. September 2020, p. 103129, 2021, doi: 10.1016/j.ergon.2021.103129.

B. Damara, “U KaRsT,” Cost Perform. Anal. Time Dev. Constr. Proj. Bridg. Chain Karanggeneng Nawacita Cs Using Earned Value Method, no. 1, pp. 1–15, 2020.

N. H. Kengke, Burhanuddin, and H. A. Kadir, “Analisis efektivitas penggunaan alat berat pada dinas bina marga dan penataan ruang daerah provinsi sulawesi tengah,” no. 11, pp. 1174–1188, 2019.

Downloads

PlumX Metrics

Published

2023-04-30

How to Cite

Wicaksono, K. H., Soetjipto, J. W., & Halik, G. (2023). Prediction Of Project Schedule Performance Index for Trans South Java Road Project Lot 7 Blitar Regency Using Bayesian Network. UKaRsT, 7(1), 46–59. https://doi.org/10.30737/ukarst.v7i1.3552

Issue

Section

Articles