Grid Satellite Rainfall Products Potential Application for Developing I-D and E-D Thresholds for Landslide Early Alert System over Bali Island




Bali, Landslides, Rainfall, Satellite, Threshold


Bali has been one of the most popular tourist destinations in Indonesia. However, on the other hand, Bali has a high risk of natural disaster vulnerability. The number of landslides in Bali took the first position compared to other natural disasters. Currently, remote sensing platforms can present Grid Satellite Rainfall Products (GSRPs), which provide rainfall information that can identify rainfall conditions for landslide events. This study aims to analyze the potential GSRPs application of Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN), the Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG), and Global Satellite Mapping of Precipitation (GSMaP) in determining the mean rainfall intensities and duration (I-D); accumulated rainfall and duration (E-D) thresholds for landslide occurrences over Bali Island. The method used to develop I-D and E-D thresholds is the power-law equation and frequentist sampling method in various probability levels (5%, 10%, 20%, 30%, 40%, and 50%). The result shows that I-D and E-D thresholds established by GSRPs are generally lower than the threshold defined by rain gauge observations. Among the three GSRPs, IMERG is performing the best in establishing the I-D and E-D thresholds for landslide phenomena. The level of potential that IMERG can use in developing the I-D and E-D thresholds is 59.16% and 84.06%, respectively. The E-D threshold derived from the IMERG product can be used to establish the landslide early alert system over Bali Island because it has a high spatial-temporal resolution, word-wide coverage, and near-real-time observation.


C.-Y. Liu, P. Aryastana, G.-R. Liu, and W.-R. Huang, “Assessment of satellite precipitation product estimates over Bali Island,” Atmos. Res., vol. 244, p. 105032, Nov. 2020, doi: 10.1016/j.atmosres.2020.105032.

J. J. Wellik, S. G. Prejean, and D. K. Syahbana, “Repeating Earthquakes During Multiple Phases of Unrest and Eruption at Mount Agung, Bali, Indonesia, 2017,” Front. Earth Sci., vol. 9, no. May, pp. 1–11, 2021, doi: 10.3389/feart.2021.653164.

I. K. A. Putra and I. G. Wardika, “Analisis Kerentanan Lahan Terhadap Potensi Bencana Tanah Longsor pada Wilayah Kaldera Batur Purba,” Media Komun. Geogr., vol. 22, no. 2, p. 208, 2021, doi: 10.23887/mkg.v22i2.36925.

S. Hall et al., “Tsunami knowledge, information sources, and evacuation intentions among tourists in Bali, Indonesia,” J. Coast. Conserv., vol. 23, no. 3, pp. 505–519, 2019, doi: 10.1007/s11852-019-00679-x.

Z. Zulfakriza et al., “Tomographic Imaging of the Agung-Batur Volcano Complex, Bali, Indonesia, From the Ambient Seismic Noise Field,” Front. Earth Sci., vol. 8, no. February, pp. 1–11, 2020, doi: 10.3389/feart.2020.00043.

M. T. Gunawan et al., “Analysis of swarm earthquakes around Mt. Agung Bali, Indonesia prior to November 2017 eruption using regional BMKG network,” Geosci. Lett., vol. 7, no. 1, 2020, doi: 10.1186/s40562-020-00163-7.

WHO, “Landslides.”

Y. Wu, Y. Ke, Z. Chen, S. Liang, H. Zhao, and H. Hong, “Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping,” Catena, vol. 187, no. October 2019, p. 104396, 2020, doi: 10.1016/j.catena.2019.104396.

T. Lei, Y. Zhang, Z. Lv, S. Li, S. Liu, and A. K. Nandi, “Landslide Inventory Mapping From Bitemporal Images Using Deep Convolutional Neural Networks,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 6, pp. 982–986, 2019, doi: 10.1109/LGRS.2018.2889307.

M. Hong, J. Kim, and S. Jeong, “Rainfall intensity-duration thresholds for landslide prediction in South Korea by considering the effects of antecedent rainfall,” Landslides, vol. 15, no. 3, pp. 523–534, Mar. 2018, doi: 10.1007/s10346-017-0892-x.

R. A. Yuniawan et al., “Revised Rainfall Threshold in the Indonesian Landslide Early Warning System,” Geosciences, vol. 12, no. 3, p. 129, Mar. 2022, doi: 10.3390/geosciences12030129.

N. Rahmawati, “Space-time variogram for daily rainfall estimates using rain gauges and satellite data in mountainous tropical Island of Bali, Indonesia (Preliminary Study),” J. Hydrol., vol. 590, no. June 2020, p. 125177, 2020, doi: 10.1016/j.jhydrol.2020.125177.

S. W. Kim, K. W. Chun, M. Kim, F. Catani, B. Choi, and J. Il Seo, “Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea,” Landslides, vol. 18, no. 2, pp. 569–582, Feb. 2021, doi: 10.1007/s10346-020-01505-4.

S. Segoni et al., “Technical Note: An operational landslide early warning system at regional scale based on space–time-variable rainfall thresholds,” Nat. Hazards Earth Syst. Sci., vol. 15, no. 4, pp. 853–861, Apr. 2015, doi: 10.5194/nhess-15-853-2015.

L. Piciullo et al., “Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides,” Landslides, vol. 14, no. 3, pp. 995–1008, Jun. 2017, doi: 10.1007/s10346-016-0750-2.

S. He, J. Wang, and S. Liu, “Rainfall Event–Duration Thresholds for Landslide Occurrences in China,” Water, vol. 12, no. 2, p. 494, Feb. 2020, doi: 10.3390/w12020494.

W. Y. Lee, S. K. Park, and H. H. Sung, “The optimal rainfall thresholds and probabilistic rainfall conditions for a landslide early warning system for Chuncheon, Republic of Korea,” Landslides, vol. 18, no. 5, pp. 1721–1739, May 2021, doi: 10.1007/s10346-020-01603-3.

S. Segoni, S. L. Gariano, and A. Rosi, “Preface to the Special Issue ‘Rainfall Thresholds and Other Approaches for Landslide Prediction and Early Warning,’” Water, vol. 13, no. 3, p. 323, Jan. 2021, doi: 10.3390/w13030323.

M. T. Brunetti, M. Melillo, S. Peruccacci, L. Ciabatta, and L. Brocca, “How far are we from the use of satellite rainfall products in landslide forecasting?,” Remote Sens. Environ., vol. 210, pp. 65–75, Jun. 2018, doi: 10.1016/j.rse.2018.03.016.

E. I. Nikolopoulos, S. Crema, L. Marchi, F. Marra, F. Guzzetti, and M. Borga, “Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence,” Geomorphology, vol. 221, pp. 286–297, Sep. 2014, doi: 10.1016/j.geomorph.2014.06.015.

E. I. Nikolopoulos, E. Destro, V. Maggioni, F. Marra, and M. Borga, “Satellite rainfall estimates for debris flow prediction: An evaluation based on rainfall accumulation-duration thresholds,” J. Hydrometeorol., vol. 18, no. 8, pp. 2207–2214, 2017, doi: 10.1175/JHM-D-17-0052.1.

C.-W. Chen, H. Saito, and T. Oguchi, “Rainfall intensity–duration conditions for mass movements in Taiwan,” Prog. Earth Planet. Sci., vol. 2, no. 1, p. 14, Dec. 2015, doi: 10.1186/s40645-015-0049-2.

F. Marra, E. I. Nikolopoulos, J. D. Creutin, and M. Borga, “Radar rainfall estimation for the identification of debris-flow occurrence thresholds,” J. Hydrol., vol. 519, pp. 1607–1619, Nov. 2014, doi: 10.1016/j.jhydrol.2014.09.039.

E. I. Nikolopoulos, M. Borga, J. D. Creutin, and F. Marra, “Estimation of debris flow triggering rainfall: Influence of rain gauge density and interpolation methods,” Geomorphology, vol. 243, pp. 40–50, Aug. 2015, doi: 10.1016/j.geomorph.2015.04.028.

E. Destro, F. Marra, E. I. Nikolopoulos, D. Zoccatelli, J. D. Creutin, and M. Borga, “Spatial estimation of debris flows-triggering rainfall and its dependence on rainfall return period,” Geomorphology, vol. 278, pp. 269–279, Feb. 2017, doi: 10.1016/j.geomorph.2016.11.019.


PlumX Metrics



How to Cite

Aryastana, P. (2023). Grid Satellite Rainfall Products Potential Application for Developing I-D and E-D Thresholds for Landslide Early Alert System over Bali Island. UKaRsT, 7(1), 104–118.