Abrams’ Law Formulation for Blended Cement Paste Incorporated with Ground Ferronickel Slag

Authors

  • Herry Suryadi Djayaprabha Department of Civil Engineering, Engineering Faculty, Parahyangan Catholic University, Bandung, Indonesia
  • Ashila Hasya Fatharani Department of Civil Engineering, Engineering Faculty, Parahyangan Catholic University, Bandung, Indonesia

DOI:

https://doi.org/10.30737/ukarst.v8i1.5485

Keywords:

Abrams' Law, Blended Cement Paste, Compressive Strength, Ground Ferronickel Slag

Abstract

Ground ferronickel slag (GFS) is a form of an industrial waste by-product generated during the smelting process of nickel ore that has been crushed and ground into fine powder. GFS is a pozzolanic substance that may be employed as an environmentally beneficial binding agent when blended with Portland cement. This research aims to apply the Abrams Law formulation to blended cement combined with GFS. GFS was utilized as a Portland cement composite (PCC) replacement at varying percentages of 0, 10, 20, 30, 40, and 50 wt.%. The blended cement paste incorporated with GFS was tested at three water to cementitious material ratio (w/cm) levels of 0.4, 0.5, and 0.6. After samples have been made, a compressive strength test is carried out. The research results showed that at 28 days, the optimum amount of GFS was found in the percentage of 20 wt.% induced the compressive strength by 40.41 MPa with a w/cm of 0.4. The equations based on Abrams’ Law have been proposed for estimating the correlation of 28-day compressive strength with w/cm in the range from 0.4 to 0.6. In addition, the hardened densities of binary blended cement paste were investigated. It was found that the density decreased with an increase of w/cm. The proposed equations provide the beneficial interpretation for estimating the compressive strength of blended cement paste based on the w/cm..

References

Global Efficiency Intelligence, "Global Cement Industry’s GHG Emissions", Available: https://www.globalefficiencyintel.com/new-blog/2021/global-cement-industry-ghg-emissions, Accessed: 16 December 2023.

Asosiasi Semen Indonesia, "Upaya Industri Semen dalam Pengendalian Emisi Gas Rumah Kaca", Available: https://asi.or.id/upaya-industri-semen-dalam-pengendalian-emisi-gas-rumah-kaca/, Accessed: 16 December 2023.

SNI 15-7064-2004, Semen Portland Komposit, Jakarta, Badan Standardisasi Nasional, 2004.

Ferhi, D. A., Cahyaningsih, S. and Pujilestari, E. (2019). Inovasi dan Efisiensi Limbah Slag Nikel yang Bernilai Tambah. Jakarta, PT Antam Tbk.

Luo, Z., Ma, Y., Mu, W., Liu, J., He, J. and Zhou, X., "Magnesium Phosphate Cement Prepared with Electric Furnace Ferronickel Slag: Properties and Its Hydration Mechanism," Constr. Build. Mater., vol. 300, 123991, 2021, doi:10.1016/j.conbuildmat.2021.123991.

Hui, W., Suping, C. and Yali, W., "Influence of Cooling Ways on the Structure and Hydraulic Activity of Blast Furnace Slag," Key Eng. Mater., vol. 633, pp. 234-239, 2015, doi:10.4028/www.scientific.net/KEM.633.234.

Saha, A. K. and Sarker, P. K., "Expansion due to Alkali-silica Reaction of Ferronickel Slag Fine Aggregate in OPC and Blended Cement Mortars," Constr. Build. Mater., vol. 123, pp. 135-142, 2016, doi:10.1016/j.conbuildmat.2016.06.144.

Nuruzzaman, M., Casimiro, J. O. C. and Sarker, P. K., "Fresh and Hardened Properties of High Strength Self-compacting Concrete using by-product Ferronickel Slag Fine Aggregate," J. Build. Eng., vol. 32, 101686, 2020, doi:10.1016/j.jobe.2020.101686.

Zulhan, Z. and Agustina, N., "A Novel Utilization of Ferronickel Slag as a Source of Magnesium Metal and Ferroalloy Production," J. Clean. Prod., vol. 292, 125307, 2021, doi:10.1016/j.jclepro.2020.125307.

Sun, J., Feng, J. and Chen, Z., "Effect of Ferronickel Slag as Fine Aggregate on Properties of Concrete," Constr. Build. Mater., vol. 206, pp. 201-209, 2019, doi:10.1016/j.conbuildmat.2019.01.187.

Petrounias, P., Rogkala, A., Giannakopoulou, P. P., Christogerou, A., Lampropoulou, P., Liogris, S., Koutsovitis, P. and Koukouzas, N., "Utilization of Industrial Ferronickel Slags as Recycled Concrete Aggregates," Applied Sciences, vol. 12, no. 4, 2231, 2022, doi:10.3390/app12042231.

Han, F., Zhang, H., Li, Y. and Zhang, Z., "Recycling and comprehensive utilization of ferronickel slag in concrete," J. Clean. Prod., vol. 414, 137633, 2023, doi:10.1016/j.jclepro.2023.137633.

Bao, J., Yu, Z., Wang, L., Zhang, P., Wan, X., Gao, S. and Zhao, T., "Application of ferronickel slag as fine aggregate in recycled aggregate concrete and the effects on transport properties," J. Clean. Prod., vol. 304, 127149, 2021, doi:10.1016/j.jclepro.2021.127149.

Kuncoro, A. and Djayaprabha, H. S., "The Effect of Sodium Hydroxide Molarity on the Compressive and Splitting Tensile Strength of Ferronickel Slag-Based Alkali Activated Mortar," Media Komunikasi Teknik Sipil, vol. 27, no. 2, pp. 151-160, 2021, doi:10.14710/mkts.v27i2.32706.

Yang, T., Yao, X. and Zhang, Z., "Geopolymer Prepared with High-magnesium Nickel Slag: Characterization of Properties and Microstructure," Constr. Build. Mater., vol. 59, pp. 188-194, 2014, doi:10.1016/j.conbuildmat.2014.01.038.

Edwin, R. S., Kimsan, M., Tamburaka, I. P., Pramono, B., Azis, A., Heede, P. V. d., Belie, N. D. and Gruyaert, E., "Effect of Ferronickel Slag as Cementitious Material on Strength of Mortar " Key Eng. Mater., vol. 931, pp. 213-218, 2022, doi:10.4028/p-n4v7se.

Lim, A. and Darian, E., "Perbaikan Tanah Lunak Menggunakan Campuran Ferronickle Slag dan Kalium Serta Natrium Hidroksida," Jurnal Rekayasa Sipil, vol. 18, no. 3, 202-213, 2022, doi:10.25077/jrs.18.3.202-213.2022.

Lim, A., Renaldy, A. and Kristian, D., "Soil Improvement of Petobo Silty Sand using Ferronickel Slag and Alkaline Activators," ARCEE, vol. 4, no. 2, 73-83, 2023, doi:10.32722/arcee.v4i02.5714.

Lemonis, N., Tsakiridis, P. E., Katsiotis, N. S., Antiohos, S., Papageorgiou, D., Katsiotis, M. S. and Beazi-Katsioti, M., "Hydration Study of Ternary Blended Cements Containing Ferronickel Slag and Natural Pozzolan," Constr. Build. Mater., vol. 81, pp. 130-139, 2015, doi:10.1016/j.conbuildmat.2015.02.046.

Kosmatka, S. H. and Wilson, M. L. (2011). Design and Control of Concrete Mixtures 15th Edition. Skokie, Portland Cement Association.

Radwan, M. K. H., Onn, C. C., Mo, K. H., Yap, S. P., Ng, C. G. and Yusoff, S., "Eco-mechanical Performance of Binary and Ternary Cement Blends Containing Fly Ash and Slag," Proceedings of the Institution of Civil Engineers - Engineering Sustainability, vol. 174, no. 1, pp. 23-36, 2021, doi:10.1680/jensu.20.00009.

Schöler, A., Lothenbach, B., Winnefeld, F. and Zajac, M., "Hydration of Quaternary Portland Cement Blends Containing Blast-furnace Slag, Siliceous Fly Ash and Limestone Powder," Cem. Concr. Compos., vol. 55, pp. 374-382, 2015, doi:10.1016/j.cemconcomp.2014.10.001.

Kuri, J. C., Khan, M. N. N. and Sarker, P. K., "Fresh and Hardened Properties of Geopolymer Binder using Ground High Magnesium Ferronickel Slag with Fly Ash," Constr. Build. Mater., vol. 272, 121877, 2021, doi:10.1016/j.conbuildmat.2020.121877.

Kurniati, E. O., Pederson, F. and Kim, H.-J., "Application of Steel Slags, Ferronickel Slags, and Copper Mining Waste as Construction Materials: A Review," Resources, Conservation and Recycling, vol. 198, 107175, 2023, doi:10.1016/j.resconrec.2023.107175.

Popovics, S. and Ujhelyi, J., "Contribution to the Concrete Strength versus Water-Cement Ratio Relationship," J. Mater. Civ. Eng., vol. 20, no. 7, pp. 459-463, 2008, doi:10.1061/(ASCE)0899-1561(2008)20:7(459).

Radhakrishna, "Strength Assessment in Portland Cement and Geopolymer Composites with Abrams' Law as Basis," J. Adv. Concr. Technol., vol. 18, no. 6, pp. 320-327, 2020, doi:10.3151/jact.18.320.

Singh, S. B., Munjal, P. and Thammishetti, N., "Role of Water/cement Ratio on Strength Development of Cement Mortar," J. Build. Eng., vol. 4, pp. 94-100, 2015, doi:10.1016/j.jobe.2015.09.003.

Rao, G. A., "Generalization of Abrams' law for cement mortars," Cem. Concr. Res., vol. 31, pp. 495-502, 2001, doi:10.1016/S0008-8846(00)00473-7.

ASTM C188-16, Standard Test Method for Density of Hydraulic Cement, West Conshohocken, ASTM International, 2016.

ASTM C305-14, Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, West Conshohocken, ASTM International, 2014.

ASTM C109-16, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), West Conshohocken, ASTM International, 2016.

Widodo, S., Ma’arif, F., Nugroho, M. S. and Mahardika, H., "Correlation of Ultrasonic Pulse Velocity with Porosity and Compressive Strength of Mortar with Limestonefor Building Quality Assessment," U Karst, vol. 6, no. 2, pp. 191-202, 2022, doi:10.30737/ukarst.v6i2.3508.

Kargari, A., Eskandari-Naddaf, H. and Kazemi, R., "Effect of cement strength class on the generalization of Abrams' law," Struct. Concr., vol. 20, no. 1, pp. 493-505, 2018, doi:10.1002/suco.201700275.

Huang, Y., Wang, Q. and Shi, M., "Characteristics and Reactivity of Ferronickel Slag Powder," Constr. Build. Mater., vol. 156, pp. 773–789, 2017, doi:10.1016/j.conbuildmat.2017.09.038.

Djayaprabha, H. S., Chang, T.-P. and Shih, J.-Y., "Long-term Mechanical Properties of No-cement Slag Based Cementitious Binder Activated with Calcined Dolomite," The 8th International Conference of Asian Concrete Federation, pp. 75-80, 2018.

Rahman, M. A., Sarker, P. K., Shaikh, F. U. A. and Saha, A. K., "Soundness and Compressive Strength of Portland Cement Blended with Ground Granulated Ferronickel Slag," Constr. Build. Mater., vol. 140, pp. 194-202, 2017, doi:10.1016/j.conbuildmat.2017.02.023.

Ley-Hernandez, A. M., Lapeyre, J., Cook, R., Kumar, A. and Feys, D., "Elucidating the Effect of Water-To-Cement Ratio on the Hydration Mechanisms of Cement," ACS Omega, vol. 3, pp. 5092-5105, 2018, doi:10.1021/acsomega.8b00097.

Bouasria, M., Babouri, L., Khadraoui, F., Chateigner, D., Gascoin, S., Pralong, V., Benzaama, M.-H., Orberger, B. and Mendili, Y. E., "Insight Into the Partial Replacement of Cement by Ferronickel Slags from New Caledonia," Eur. J. Environ. Civ. Eng., vol. 26, no. 8, pp. 3662-3680, 2022, doi:10.1080/19648189.2020.1814421.

Bede, A. and Ardelean, I., "Revealing the influence of water-cement ratio on the pore size distribution in hydrated cement paste by using cyclohexane," AIP Conference Proceedings, vol. 1917, 040002, 2017, doi:10.1063/1.5018284.

Sear, L. K. A., Dews, J., Kite, B., Harris, F. C. and Troy, J. F., "Abrams Law, Air and High Water-to-cement Ratios " Constr. Build. Mater., vol. 10, no. 3, pp. 221-226, 1996, doi:10.1016/0950-0618(95)00079-8.

Li, S., Yang, J. and Zhang, P., "Water-Cement-Density Ratio Law for the 28-Day Compressive Strength Prediction of Cement-Based Materials," Adv. Mater. Sci. Eng. , vol. 2022, 7302173 2022, doi:10.1155/2020/7302173.

Mondal, A. and Bhanja, S., "Augmentation of Abrams Law for Fly Ash Concrete," Mater. Today Proc., vol. 65, no. 2, pp. 644-650, 2022, doi:10.1016/j.matpr.2022.03.204.

ElNemr, A., "Generating Water/binder Ratio to Strength Curves for Cement Mortar Used in Masnory Walls," Constr. Build. Mater., vol. 233, 117249, 2020, doi:10.1016/j.conbuildmat.2019.117249.

Downloads

PlumX Metrics

Published

2024-04-22

How to Cite

Djayaprabha, H. S., & Fatharani, A. H. (2024). Abrams’ Law Formulation for Blended Cement Paste Incorporated with Ground Ferronickel Slag. UKaRsT, 8(1), 1–14. https://doi.org/10.30737/ukarst.v8i1.5485

Issue

Section

Articles