Optimasi Geometri Lereng dengan Evaluasi Nilai Faktor Keamanan Menggunakan Software Geostudio


  • Gilang Wahyu Kottama Program Studi Teknik Sipil, Fakultas Teknik, Universitas Kadiri, Kediri, Indonesia.
  • Agata Iwan Candra Program Studi Teknik Sipil, Fakultas Teknik, Universitas Kadiri, Kediri, Indonesia. https://orcid.org/0000-0002-7657-6810
  • Arif Rivianto Program Studi Teknik Sipil, Fakultas Teknik, Universitas Kadiri, Kediri, Indonesia.
  • Muhammad Rifqi Fatkhur Rohman Program Studi Teknik Sipil, Fakultas Teknik, Universitas Kadiri, Kediri, Indonesia.
  • M Rizal Agus Joko Budiawan Program Studi Teknik Sipil, Fakultas Teknik, Universitas Kadiri, Kediri, Indonesia.
  • M Sousa Taufani Program Studi Teknik Sipil, Fakultas Teknik, Universitas Kadiri, Kediri, Indonesia.
  • M Wildan Prasetyo Program Studi Teknik Sipil, Fakultas Teknik, Universitas Kadiri, Kediri, Indonesia.




Geostudio, Landslide, Sand Poor, Shear Angle, Slope Stability


The slopes of the Widas watershed in Kutorejo Village, Bagor District, Nganjuk Regency were hit by a landslide, damaging a 50-meter-long road. This damage has an impact on the activities and mobility of residents. The impact of landslides caused enormous losses, both infrastructure damage and loss of life. Several studies have been carried out, in determining slope stability it is necessary to observe at the research location and determine the type of soil, soil consistency, and soil shear strength parameters. This research aims to determine the value of the safety factor (FK) on the slopes of the Widas River. This research began by conducting a case study, including interviews, collecting field survey data, taking soil samples, and laboratory testing. Slope stability analysis was carried out using Geostudio software. The research results show that the soil type is classified as Poorly Graded Sand (SP), and the soil consistency is classified as Non-Plastic soil with a liquid limit of 26.093 and a shear angle of 20° - 30°. Slope improvements were carried out by changing the slope geometry until a slope ratio of 1V:2H was obtained by creating two slope core models. The FK value increased from 1.007 to 1.107 and 1.437 to 1.585 under pore water pressure conditions. Thus, the slope modeling obtained can be used to overcome landslide problems.


BNPB, “Badan Nasional Penanggulangan Bencana,” gis.bnpb.go.id, 2022. .

S. Dewedree and S. N. Jusoh, “Slope stability analysis under different soil nailing parameters using the SLOPE/W software,” J. Phys. Conf. Ser., vol. 1174, no. 1, 2019, doi: 10.1088/1742-6596/1174/1/012008.

Y. L. Chen, G. Y. Liu, N. Li, X. Du, S. R. Wang, and R. Azzam, “Stability evaluation of slope subjected to seismic effect combined with consequent rainfall,” Eng. Geol., vol. 266, no. December 2019, 2020, doi: 10.1016/j.enggeo.2019.105461.

U. Arsyad, R. A. Barkey, W. Wahyuni, and K. K. Matandung, “Characteristics of Landslides in the Tangka River Basin,” J. Hutan dan Masy., vol. 10, no. 1, pp. 203–214, 2018.

I. S. Wibowo, P. W. Ciptadi, and R. H. Hardyanto, “Sistem Peringatan Dini Bencana Longsor Menggunakan Sensor Accelerometer dan Sensor Soil Moisture Berbasis Android,” Din. Inform., pp. 164–169, 2021.

A. Setyawan, J. E. Suseno, R. D. Winesthi, and S. A. Otaviana, “Peringatan Dini Tanah Longsor Berdasarkan Kelembaban Tanah Secara Jarak Jauh Menggunakan Sensor FC-28 dan Node MCU,” J. Ilmu Lingkung., vol. 18, no. 2, pp. 242–246, 2020, doi: 10.14710/jil.18.2.242-246.

J. S. Gidon and S. Sahoo, “Rainfall-Induced Slope Failures and Use of Bamboo as a Remedial Measure: A Review,” Indian Geotech. J., vol. 50, no. 5, pp. 766–783, 2020, doi: 10.1007/s40098-020-00409-3.

B. Zhang et al., “Water Flow Characteristics Controlled by Slope Morphology under Different Rainfall Capacities and Its Implications for Slope Failure Patterns,” Water (Switzerland), vol. 14, no. 8, 2022, doi: 10.3390/w14081271.

M. I. Khan and S. Wang, “Slope stability analysis to correlate shear strength with slope angle and shear stress by considering saturated and unsaturated seismic conditions,” Appl. Sci., vol. 11, no. 10, 2021, doi: 10.3390/app11104568.

Z. Dai, J. Guo, H. Luo, J. Li, and S. Chen, “Strength characteristics and slope stability analysis of expansive soil with filled fissures,” Appl. Sci., vol. 10, no. 13, 2020, doi: 10.3390/app10134616.

M. W. Riskyanto, P. P. Putra, and L. A. Wicaksono, “Optimalisasi Stabilitas Lereng pada Daerah Sempadan Sungai Santer Kecamatan Gumukmas Kabupaten Jember,” Bentang J. Teor. dan Terap. Bid. Rekayasa Sipil, vol. 11, no. 1, pp. 11–20, 2023, doi: 10.33558/bentang.v11i1.4531.

U. C. Nebeokike, O. Igwe, J. C. Egbueri, and S. I. Ifediegwu, “Erodibility characteristics and slope stability analysis of geological units prone to erosion in Udi area, southeast Nigeria,” Model. Earth Syst. Environ., vol. 6, no. 2, pp. 1061–1074, 2020, doi: 10.1007/s40808-020-00741-w.

A. Rochim and Pratikso, “Characterization of landslide and its earthwork solutions,” J. Phys. Conf. Ser., vol. 1517, no. 1, 2020, doi: 10.1088/1742-6596/1517/1/012035.

ASTM, “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA,” ASTM International. pp. 1–5, 2019.

ASTM D4318, ASTM D 4318-10, and A. D4318-05, “Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils,” Report, vol. 04, no. March 2010, pp. 1–14, 2005, doi: 10.1520/D4318-17.Therefore.

ASTM, “Standard test method for direct shear test of soils under consolidated drained conditions,” Am. Soc. Test. Mater. -Astm, vol. 4, pp. 1–9, 2011, doi: 10.1520/D3080.

Das, “Principles of Geotechnical Engineering,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013.

D. S. Hadmoko, F. Lavigne, J. Sartohadi, P. Hadi, and Winaryo, “Landslide hazard and risk assessment and their application in risk management and landuse planning in eastern flank of Menoreh Mountains, Yogyakarta Province, Indonesia,” Nat. Hazards, vol. 54, no. 3, pp. 623–642, 2010, doi: 10.1007/s11069-009-9490-0.

S. Ravindran, I. Gratchev, and C. Author, “ESTIMATION OF SHEAR STRENGTH OF GRAVELLY AND SANDY,” vol. 18, no. 70, pp. 130–137, 2020.

D. P. A. P. Bujung, Turangan Arens E, and A. N. Sarajar, “Pengaruh intensitas curah hujan terhadap kuat geser tanah,” J. Tekno, vol. 17, no. 22, pp. 47–51, 2019.

N. Fan, T. K. Nian, X. Sen Guo, H. Bin Jiao, and S. Lu, “Piecewise strength model for three types of ultra-soft fine-grained soils,” Soils Found., vol. 60, no. 4, pp. 778–790, 2020, doi: 10.1016/j.sandf.2020.04.010.

H. M. Shiferaw, “Study on the influence of slope height and angle on the factor of safety and shape of failure of slopes based on strength reduction method of analysis,” 2021.

J. S. Frans and M. H. Nurfalaq, “Studi Geoteknik Pengaruh Muka Air Tanah Terhadap Kestabilan Lereng Tambang Batubara,” Pros. Temu Profesi Tah. PERHAPI, vol. 1, no. 1, pp. 475–488, 2020, doi: 10.36986/ptptp.v1i1.90.

N. Analysis, “water Topographic E ff ects on Three-Dimensional Slope,” pp. 1–24, 2020.

I. A. Chusna, N. R. Mulyaputra, V. Vergiagara, and H. Suharyadiv, “Study of the effect on stability of slope variations and reserve estimation in the Kaolin mining quarry design,” Evol. Geotech - 25 Years Innov., pp. 103–109, 2022, doi: 10.1201/9781003188339-14.

R. Feng, G. Fourtakas, B. D. Rogers, and D. Lombardi, “Two-phase fully-coupled smoothed particle hydrodynamics (SPH) model for unsaturated soils and its application to rainfall-induced slope collapse,” Comput. Geotech., vol. 151, no. August, p. 104964, 2022, doi: 10.1016/j.compgeo.2022.104964.


PlumX Metrics