Rationalization of Rainfall Station Network in Welang Watershed Using Kagan-Rodda Method

Authors

  • Safira Anisah Haromain Department of Irrigation Engineering, Faculty of Engineering, Brawijaya University
  • Sri Wahyuni Department of Irrigation Engineering, Faculty of Engineering, Brawijaya University
  • Lily Montarcih Limantara Department of Water Resources Engineering, Faculty of Engineering, Brawijaya University

DOI:

https://doi.org/10.30737/ukarst.v6i2.2829

Keywords:

Rationalization, Rainfall Station, CHIRPS Satellite, WMO, Kagan-Rodda, Welang

Abstract

Rationalizing rainfall station is important to get an effective and efficient number and distribution of rainfall stations. If rationalization isn’t carried out, it affect to operating and maintenance costs of rainfall stations and accuracy of data. This study aimed to evaluate existing rainfall station and rationalize rainfall station, so rainfall station’s location is evenly distributed. This study is located in Welang watershed with an area 477.78 km2. This research requires rainfall ground data from 9 rainfall stations and CHIRPS satellite rainfall data from Google Earth Engine. The data is tested with consistency, stationary, suitability, and rationalization based on World Meteorological Organization (WMO) standards and Kagan-Rodda method. Later, new rainfall station networks will be obtained with the influence area of rainfall stations suitable to WMO Standard. CHIRPS data is highly suitable with ground data, proven by high NSE, strong correlation, and low relative error, so CHIRPS data can be used for further analysis. According WMO, only 1 rainfall station in Welang watershed has been suitable for WMO standard. Those unsuitable with WMO standards need to be rationalized. Based rationalization results, with average error <10%, Welang watershed requires 4 rainfall stations by maintaining Lawang Station, moving Telebuk to Station B, Selowongko to Station C, and Tutur to Station D. The influence area of recommendation rainfall stations have been suitable to WMO Standards and obtained even distribution rainfall stations. This recommendation are expected to be considered by relevant institutes to move the location of the rainfall station to get more accurate rainfall data.

References

F. Y. Pramono, Suripin, Suharyanto, and W. Sulistya, “Rationalization of rain stations in the ciliwung cisadane river basin,†Int. J. Eng. Res. Technol., vol. 12, no. 12, pp. 2957–2963, 2019.

C. Y. Liu, P. Aryastana, G. R. Liu, and W. R. Huang, “Assessment of satellite precipitation product estimates over Bali Island,†Atmos. Res., vol. 244, no. January, p. 105032, 2020, doi: 10.1016/j.atmosres.2020.105032.

H. Li, W. Wang, J. Fu, Z. Chen, Z. Ning, and Y. Liu, “Quantifying the relative contribution of climate variability and human activities impacts on baseflow dynamics in the Tarim River Basin, Northwest China,†J. Hydrol. Reg. Stud., vol. 36, no. May, p. 100853, 2021, doi: 10.1016/j.ejrh.2021.100853.

M. Musie, S. Sen, and P. Srivastava, “Comparison and evaluation of gridded precipitation datasets for streamflow simulation in data scarce watersheds of Ethiopia,†J. Hydrol., vol. 579, no. August, p. 124168, 2019, doi: 10.1016/j.jhydrol.2019.124168.

F. Ayu, R. Shiami, and U. Lasminto, “Rationalization of Hydrology Station Network Using Rainfall Ground and Satellite Data,†Int. Res. J. Adv. Eng. Sci., vol. 4, no. 3, pp. 225–229, 2019, doi: 10.5281/zenodo.3365590.

M. Ghosh, J. Singh, S. Sekharan, S. Ghosh, P. E. Zope, and S. Karmakar, “Rationalization of automatic weather stations network over a coastal urban catchment: A multivariate approach,†Atmos. Res., vol. 254, no. February, p. 105511, 2021, doi: 10.1016/j.atmosres.2021.105511.

V. Varekar, V. Yadav, and S. Karmakar, “Rationalization of water quality monitoring locations under spatiotemporal heterogeneity of diffuse pollution using seasonal export coefficient,†J. Environ. Manage., vol. 277, no. August 2020, p. 111342, 2021, doi: 10.1016/j.jenvman.2020.111342.

T. A. J. G. Sirisena, S. Maskey, R. Ranasinghe, and M. S. Babel, “Effects of different precipitation inputs on streamflow simulation in the Irrawaddy River Basin, Myanmar,†J. Hydrol. Reg. Stud., vol. 19, no. October, pp. 265–278, 2018, doi: 10.1016/j.ejrh.2018.10.005.

S. Prakash, A. K. Mitra, A. AghaKouchak, Z. Liu, H. Norouzi, and D. S. Pai, “A preliminary assessment of GPM-based multi-satellite precipitation estimates over a monsoon dominated region,†J. Hydrol., vol. 556, no. February 2014, pp. 865–876, 2018, doi: 10.1016/j.jhydrol.2016.01.029.

F. Peng, S. Zhao, C. Chen, D. Cong, Y. Wang, and H. Ouyang, “Evaluation and comparison of the precipitation detection ability of multiple satellite products in a typical agriculture area of China,†Atmos. Res., vol. 236, no. August 2019, p. 104814, 2020, doi: 10.1016/j.atmosres.2019.104814.

C. Ocampo-Marulanda, C. Fernández-Ãlvarez, W. L. Cerón, T. Canchala, Y. Carvajal-Escobar, and W. Alfonso-Morales, “A spatiotemporal assessment of the high-resolution CHIRPS rainfall dataset in southwestern Colombia using combined principal component analysis,†Ain Shams Eng. J., vol. 13, no. 5, p. 101739, 2022, doi: 10.1016/j.asej.2022.101739.

Z. Shen et al., “Recent global performance of the Climate Hazards group Infrared Precipitation (CHIRP) with Stations (CHIRPS),†J. Hydrol., vol. 591, no. January, p. 125284, 2020, doi: 10.1016/j.jhydrol.2020.125284.

A. Fadholi, R. Adzani, U. Gadjah Mada, and S. Meteorologi Depati Amir Pangkalpinang, “Analisis Frekuensi Curah Hujan Ekstrem Kepulauan Bangka Belitung Berbasis Data Climate Hazards Group Infrared Precipitation with Station (CHIRPS),†J. Pendidik. Geogr., vol. 18, no. 1, pp. 22–32, 2018.

A. Faisol, Indarto, E. Novita, and Budiyono, “Komparasi Antara Climate Hazards Group Infrared Precipitation With Stations (CHIRPS) dan Global Precipitation Measurement

(GPM) dalam Membangkitkan Informasi Curah Hujan Harian di Provinsi Jawa Timur,†J. Teknol. Pertan. ANDALAS, vol. 3, no. 2, pp. 148–156, 2020.

Z. R. Alfirman, L. M. Limantara, and S. Wahyuni, “Rasionalisasi Kerapatan Pos Hujan Menggunakan Metode Kagan-Rodda Di Sub Das Lesti,†J. Tek. Sipil, vol. 8, no. 2, pp. 153–164, 2019.

R. Renaldhy, I. Wayan Yasa, and E. Setiawan, “Evaluasi Rasionalisasi Stasiun Hujan Metode Kagan Rodda dengan Mempertimbangkan Kriteria Penentuan Lokasi Pembangunan Stasiun Hujan,†J. Tek. Pengair., vol. 12, no. 1, pp. 49–60, 2021, doi: 10.21776/ub.pengairan.2021.012.01.05.

E. Prawati and V. Dermawan, “Rasionalisasi Jaringan Stasiun Hujan Menggunakan Metode Kagan Rodda Dengan Memperhitungkan Faktor Topografi Pada Das Sarokah Kabupaten Sumenep (Pulau Madura, Jawa Timur),†Tapak, vol. 8, no. 1, pp. 79–90, 2018.

R. W. Sayekti, S. Wahyuni, M. Bisri, M. J. Ismoyo, and N. A. Nathania, “Mathematical model distribution of some water quality parameters in the reservoir,†Civ. Environ. Sci. J., vol. 5, no. 1, pp. 64–77, 2022.

N. Salsabila, L. M. Limantara, and J. Sidqi, “Analisis Curah Hujan Serial Terhadap Debit Maksimum di Sub DAS Kampili, DAS Jeneberang, Sulawesi Selatan,†J. Teknol. dan Rekayasa Sumber Air, vol. 1, no. 2, pp. 736–749, 2021.

M. H. Le, V. Lakshmi, J. Bolten, and D. Du Bui, “Adequacy of Satellite-derived Precipitation Estimate for Hydrological Modeling in Vietnam Basins,†J. Hydrol., vol. 586, no. November 2019, p. 124820, 2020, doi: 10.1016/j.jhydrol.2020.124820.

A. G. Mengistu, T. A. Woldesenbet, and Y. D. Taddele, “Evaluation of observed and satellite-based climate products for hydrological simulation in data-scarce Baro -Akob River Basin, Ethiopia,†Ecohydrol. Hydrobiol., vol. 22, no. 2, pp. 234–245, 2022, doi: 10.1016/j.ecohyd.2021.11.006.

S. Wahyuni, D. Sisinggih, and I. A. G. Dewi, “Validation of Climate Hazard Group InfraRed Precipitation with Station (CHIRPS) Data in Wonorejo Reservoir, Indonesia,†IOP Conf. Ser. Earth Environ. Sci., vol. 930, no. 1, 2021, doi: 10.1088/1755-1315/930/1/012042.

E. Dzisofi Amelia, S. Wahyuni, and D. Harisuseno, “Evaluasi Kesesuaian Data Satelit sebagai Alternatif Ketersediaan Data Evaporasi di Waduk Wonorejo Compatibility Evaluation Satellite Data as an Alternative of Evaporation Data Availability in Wonorejo Reservoir,†J. Tek. Pengair., vol. 2021, no. 2, pp. 127–138, 2021, [Online]. Available: https://doi.org/10.21776/ub.pengairan.2021.012.02.05.

World Meteorological Organization, Guide to Hydrological Practices, vol. 56, no. 1. 2011.

I. W. Astuti, E. Suhartanto, and J. S. Fidari, “Rasionalisasi Jaringan Pos Hujan dan Pos Duga Air Dengan Metode Stepwise dan Standar WMO (World Metrological Organization) di DAS Opak,†J. Teknol. dan Rekayasa …, vol. 2, no. 1, pp. 377–385, 2021, [Online]. Available: https://jtresda.ub.ac.id/index.php/jtresda/article/view/205.

PlumX Metrics

Published

2022-09-07

How to Cite

Haromain, S. A., Wahyuni, S., & Limantara, L. M. (2022). Rationalization of Rainfall Station Network in Welang Watershed Using Kagan-Rodda Method. UKaRsT, 6(2), 143–157. https://doi.org/10.30737/ukarst.v6i2.2829

Issue

Section

Articles