Analisis Switching Behavior Pengguna Produk Buy Now Pay Later Menggunakan Push Pull Mooring Framework

Authors

  • Tiara Yuliyanti
  • Mychelia Champaca Universitas Brawijaya Malang

DOI:

https://doi.org/10.30737/ekonika.v9i2.5751

Keywords:

mooring effect, switching behavior

Abstract

The objective of this research is to identify the impacts of privacy concern as a push effect, monetary rewards of alternative as a pull effect, and inertia as a mooring effect on product switching behavior in buy now pay later among SPaylater users in Jabodetabek. The respondents of this quantitative study were selected through purposive sampling, and the data was analyzed using SEM-PLS (Structural Equation Modeling – Partial Least Squares). The results of the assessment lead to conclusions that privacy concern as a push effect positively and significantly influences the switching behavior, that monetary rewards of alternative as a pull effect positively and significantly influences the switching behavior, and that inertia as a mooring effect has no effect on the switching behavior. Further, the results also indicate that inertia is not significant in moderating the impact of privacy concern on the switching behavior and the impact of monetary rewards of alternatives on the switching behavior. In addition this study finds factors that make individuals switch to other paylater services based on migrating or switching theory as well as consumer’s decision-making processes based on the studied variables

Downloads

Download data is not yet available.

References

Adams, T. L., & Demaiter, E. I. (2008). Skill, education and credentials in the new economy: the case of information technology workers. Work, Employment and Society, 22(2), 351–362. https://doi.org/10.1177/0950017008089109

Afandi, M. A. (2020). Mengukur Potensi Perpindahan Nasabah Perbankan Kategori Milenial pada Layanan Pembiayaan Fintech Lending. Jurnal Ekonomi Indonesia, 9, 11–24.

Ashari, M. (2022, March 22). Belajar Dari Kebocoran Data Kredensial: Data Yang Paling Berharga adalah Data Pribadi. Artikel Direktorat Jenderal Kekayaan Negara. https://www.djkn.kemenkeu.go.id/artikel/baca/14838/Belajar-Dari-Kebocoran-Data-Kredensial-Data-Yang-Paling-Berharga-adalah-Data-Pribadi.html

Bansal, H. S., Taylor, S. F., & James, Y. S. (2005). “Migrating” to new service providers: Toward a unifying framework of consumers’ switching behaviors. In Journal of the Academy of Marketing Science (Vol. 33, Issue 1, pp. 96–115). https://doi.org/10.1177/0092070304267928

Bogue, D. J. (1977). A Migrant’s-Eye View of the Costs and Benefits of Migration to a Metropolis. In Internal Migration (pp. 167–182). Elsevier. https://doi.org/10.1016/B978-0-12-137350-4.50016-0

Carbó-Valverde, S., & Liñares-Zegarra, J. M. (2011). How effective are rewards programs in promoting payment card usage? Empirical evidence. Journal of Banking & Finance, 35(12), 3275–3291. https://doi.org/10.1016/j.jbankfin.2011.05.008

Clemes, M. D., Gan, C., & Zhang, D. (2010). Customer switching behaviour in the Chinese retail banking industry. International Journal of Bank Marketing, 28(7), 519–546. https://doi.org/10.1108/02652321011085185

Dinev, T., & Hart, P. (2006). An extended privacy calculus model for e-commerce transactions. Information Systems Research, 17(1), 61–80. https://doi.org/10.1287/isre.1060.0080

Gay, L. R., Mills, G. E., & Airasian, P. W. (2012). Educational research: Competencies for analysis and applications. Pearson.

Gilbert, D., Lee-Kelley, L., & Barton, M. (2003). Technophobia, gender influences and consumer decision-making for technology-related products. In European Journal of Innovation Management (Vol. 6, Issue 4, pp. 253–263). https://doi.org/10.1108/14601060310500968

Gray, D., & Alessandro, S. D. ’. (2015). The Influence of Inertia on Brand Switching Behavior. In Developments in Marketing Science: Proceedings of the Academy of Marketing Science (pp. 779–787).

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate Data Analysis (7th Edition). Pearson.

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) Second Edition (Second Edition). SAGE Publication.

Hsieh, J. K., Hsieh, Y. C., Chiu, H. C., & Feng, Y. C. (2012). Post-adoption switching behavior for online service substitutes: A perspective of the push-pull-mooring framework. Computers in Human Behavior, 28(5), 1912–1920. https://doi.org/10.1016/j.chb.2012.05.010

Julian, L., Napitupulu, N., Soehadi, A. W., & Rustandi, F. U. (2020). Perubahan Perilaku Pengguna M-Wallet terhadap M-Wallet lainnya Menggunakan Push-Pull-Mooring (PPM) Framework. Kajian Branding Indonesia, 2(2), 269–299. https://doi.org/10.21632/kbi.2.2.269-299

Kalakota, R. (1997). Electronic commerce: a manager's guide. AddisonWesley Longman.

Kotler, P., Keller, K., Brady, M., Goodman, M., & Hansen, Mt. (2016). Marketing Management (Third Edition). Pearson.

Kotler, P., & Keller, K. L. (2016). A Framework for Marketing Management (Sixth Edition). Pearson Education Limited.

Kredivo, & Katadata Insight Center. (2022). PERILAKU KONSUMEN E-COMMERCE INDONESIA.

Kredivo, & Katadata Insight Center. (2023). Laporan Perilaku Konsumen e-Commerce Indonesia 2023: Pemulihan Ekonomi dan Tren Belanja Pasca Pandemi.

Law, M., Ng, M., & Lai, Y. K. S. (2023). Switch or continue to use? An empirical investigation into mobile payment applications. Journal of Global Scholars of Marketing Science: Bridging Asia and the World. https://doi.org/10.1080/21639159.2023.2264304

Liang, A. R. Da, Lee, C. L., & Tung, W. (2014). The role of sunk costs in online consumer decision-making. Electronic Commerce Research and Applications, 13(1), 56–68. https://doi.org/10.1016/j.elerap.2013.10.001

Likert, R. (1932). A techique for the measurement of attitudes. Archives of Psychology, 22(140), 5–55.

Oreg, S. (2003). Resistance to change: Developing an individual differences measure. Journal of Applied Psychology, 88(4), 680–693. https://doi.org/10.1037/0021-9010.88.4.680

Ozili, P. K. (2022). The Acceptable R-Square in Empirical Modelling for Social Science Research. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4128165

Peter, J. Paul., & Olson, J. C. (Jerry C. (2010). Consumer behavior & marketing strategy (Ninth Edition). McGraw-Hill Irwin.

Polites, G. L., Karahanna, E., & Polîtes, G. L. (2012). Shackled to the Status Quo: The Inhibiting Effects of Incumbent System Habit, Switching Costs, and Inertia on New System Acceptance Quarterly. In Source: MIS Quarterly (Vol. 36, Issue 1). http://www.misq.org

Populix. (2023). Unveiling Indonesia’s Financial Evolution: Fintech Lending & Paylater Adoption.

Prinsloo, C., & Lew, C. (2021). Openness to change and conservation in value-laden decisions. SA Journal of Human Resource Management, 19. https://doi.org/10.4102/sajhrm.v19i0.1468

PT Commerce Finance. (2022). Sustainability Report.

PT Shopee International Indonesia. (2023, January 20). Kebijakan Privasi SPayLater. Pusat Bantuan Shopee. https://help.shopee.co.id/portal/4/article/96696-Kebijakan-Privasi-SPayLater

Purba, N. N., Syaukat, Y., & Maulana, Tb. N. A. (2016). FAKTOR-FAKTOR YANG MEMENGARUHI TINGKAT PENYALURAN KREDIT PADA BPR KONVENSIONAL DI INDONESIA. Jurnal Aplikasi Bisnis Dan Manajemen, 2(2), 105–117. https://doi.org/10.17358/jabm.2.2.105

Ranganathan, C., Seo, D. B., & Babad, Y. (2006). Switching behavior of mobile users: Do users’ relational investments and demographics matter? European Journal of Information Systems, 15(3), 269–276. https://doi.org/10.1057/palgrave.ejis.3000616

Santosa, P. I. (2018). Metode Penelitian Kuantitatif: Pengembangan Hipotesis dan Pengujiannya Menggunakan SmartPLS. Andi.

Shin, D. H., & Kim, W. Y. (2008). Forecasting customer switching intention in mobile service: An exploratory study of predictive factors in mobile number portability. Technological Forecasting and Social Change, 75(6), 854–874. https://doi.org/10.1016/j.techfore.2007.05.001

Smith, H. J., Milberg, S. J., Burke, S. J., North, O., & Washington, H. (1996). Information Privacy: Measuring Individuals’ Concerns about Organizational Practices. In Quarterly (Vol. 20, Issue 2).

Stewart, K. A., & Segars, A. H. (2002). An Empirical Examination of the Concern for Information Privacy Instrument. In Research (Vol. 13, Issue 1).

Sun, Y., Liu, D., Chen, S., Wu, X., Shen, X. L., & Zhang, X. (2017). Understanding users’ switching behavior of mobile instant messaging applications: An empirical study from the perspective of push-pull-mooring framework. Computers in Human Behavior, 75, 727–738. https://doi.org/10.1016/j.chb.2017.06.014

Suswandari. (2017). Local History of Jakarta and MulticulturalAttitude (Historical Local Study of Betawi Ethnic). Journal of Education, Teaching and Learning, 2, 34–41.

Tenenhaus, M., Vinzi, V. E., Chatelin, Y. M., & Lauro, C. (2005). PLS path modeling. Computational Statistics and Data Analysis, 48(1), 159–205. https://doi.org/10.1016/j.csda.2004.03.005

Wang, L., Luo, X. (Robert), Yang, X., & Qiao, Z. (2019). Easy come or easy go? Empirical evidence on switching behaviors in mobile payment applications. Information and Management, 56(7). https://doi.org/10.1016/j.im.2019.02.005

Ye, D., Liu, F., Cho, D., & Jia, Z. (2022). Investigating switching intention of e-commerce live streaming users. Heliyon, 8(10). https://doi.org/10.1016/j.heliyon.2022.e11145

Zeng, Z., Li, S., Lian, J. W., Li, J., Chen, T., & Li, Y. (2021). Switching behavior in the adoption of a land information system in China: A perspective of the push–pull–mooring framework. Land Use Policy, 109. https://doi.org/10.1016/j.landusepol.2021.105629

Zhao, H., Anong, S. T., & Zhang, L. (2019). Understanding the impact of financial incentives on NFC mobile payment adoption: An experimental analysis. International Journal of Bank Marketing, 37(5), 1296–1312. https://doi.org/10.1108/IJBM-08-2018-0229

PlumX Metrics

Published

2024-09-30

How to Cite

Yuliyanti, T., & Champaca, M. (2024). Analisis Switching Behavior Pengguna Produk Buy Now Pay Later Menggunakan Push Pull Mooring Framework . Ekonika : Jurnal Ekonomi Universitas Kadiri, 9(2), 336–360. https://doi.org/10.30737/ekonika.v9i2.5751