Comparison of Pushover Method and Direct Displacement Method in Earthquake Load Analysis with Performance-Based Design Concepts

Authors

  • I Nengah Sinarta Warmadewa University, Bali
  • I Made Bagastia Pinandika Warmadewa University, Bali

DOI:

https://doi.org/10.30737/ukarst.v4i2.1025

Keywords:

Earthquake Force, Pushover Analysis, Direct Displacement, FEMA 356

Abstract

The development of earthquake-resistant building designs led to developing an analysis method for earthquake loads, one of the performance-based methods. This method uses structural displacement as an approach. The purpose of this analysis method was to guarantee the structure's performance so that it will be able to withstand forces due to earthquake loads. In this paper, an analysis of a building structure's design was more reliable with applicable regulations in Indonesia and determined building performance based on FEMA 356. The study was carried out using the direct displacement method and the pushover analysis method, with the displacement targets and structure performance levels being compared with each other. Based on these results, it can conclude that the use of the direct displacement method and pushover analysis can produce almost the same displacement target values and structure performance levels. Comparison using pushover analysis design performance targets can be fulfilled so that the Direct Displacement Based Design Method can be used in structures. The total displacement value of the x-x (δT) direction is 0.300 m, and the y-y course is 0.115 m.

References

I. N. Riana Damara, I. N. Sinarta, and I. K. Yasa Bagiarta, “Analisa Kekuatan Struktur Bambu Pada Pembangunan Entry Building Green School Ubud,†Ukarst Univ. Kadiri Ris. Tek. Sipil, vol. 4, no. 1, 2020, doi: http://dx.doi.org/10.30737/ukarst.v3i2.

S. Winarto, A. I. Candra, E. Siswanto, and R. Ajiono, “Analysis Causes Damage and Prevention of Concrete,†J. Phys. Conf. Ser., vol. 1569, no. 4, 2020, doi: 10.1088/1742-6596/1569/4/042031.

A. Ridwan, A. I. Candra, E. Gardjito, and Suwarno, “Experimental Study Additional Brantas Sands of Clay Density,†J. Phys. Conf. Ser., vol. 1569, no. 4, 2020, doi: 10.1088/1742-6596/1569/4/042030.

I. N. Sinarta and I. W. Ariyana Basoka, “The potential of liquefaction disasters based on the geological, CPT, and borehole data at southern Bali Island,†J. Appl. Eng. Sci., vol. 17, no. 4, pp. 535–540, 2019, doi: 10.5937/jaes17-20794.

A. Ndoj, N. Shkodrani, and V. Hajdari, “Liquefaction-Induced Ground Deformations Evaluation Based on Cone Penetration Tests (CPT),†World J. Eng. Technol., vol. 02, no. 04, pp. 249–259, 2014, doi: 10.4236/wjet.2014.24026.

A. I. Candra, “ANALISIS DAYA DUKUNG PONDASI STROUS PILE PADA PEMBANGUNAN GEDUNG MINI HOSPITAL UNIVERSITAS KADIRI,†Ukarst, vol. 1, no. 1, pp. 63–70, 2017.

I. N. Sinarta, A. Rifa’i, T. F. Fathani, and W. Wilopo, “Spatial Analysis of Safety Factors due to Rain Infiltration in the Buyan-Beratan Ancient Mountains,†Int. Rev. Civ. Eng., vol. 11, no. 2, p. 90, Mar. 2020, doi: 10.15866/irece.v11i2.17668.

I. N. Sinarta and I. W. Ariyana Basoka, “Safety factor analysis of landslides hazard as a result of rain condition infiltration on Buyan-Beratan Ancient Mountain Safety factor analysis of landslides hazard as a result of rain condition infiltration on Buyan-Beratan Ancient Mountain,†J. Phys. Conf. Ser., vol. 1402, no. 2, 2019, doi: 10.1088/1742-6596/1402/2/022002.

Sudarman, H. Manalip, R. S. Windah, and S. O. Dapas, “Analisis Pushover Pada Struktur Gedung Bertingkat,†J. Sipil Statik, vol. 2, no. 4, pp. 201–213, 2014.

SNI 2847-2019, “SNI 03-2847:2019 Persyaratan Beton Struktural Untuk Bangunan Gedung Dan Penjelasan Sebagai Revisi Dari Standar Nasional Indonesia 2847 : 2013,†Badan Standarisasi Nas., no. 8, 2019.

I. N. Riana Damara, I. N. Sinarta, and I. K. Yasa Bagiarta, “Analisa Kekuatan Struktur Bambu Pada Pembangunan Entry Building Green School Ubud,†Ukarst Univ. Kadiri Ris. Tek. Sipil, vol. 4, no. 1, 2020, doi: http://dx.doi.org/10.30737/ukarst.v3i2.

S. Winarto, A. I. Candra, E. Siswanto, and R. Ajiono, “Analysis Causes Damage and Prevention of Concrete,†J. Phys. Conf. Ser., vol. 1569, no. 4, 2020, doi: 10.1088/1742-6596/1569/4/042031.

A. Ridwan, A. I. Candra, E. Gardjito, and Suwarno, “Experimental Study Additional Brantas Sands of Clay Density,†J. Phys. Conf. Ser., vol. 1569, no. 4, 2020, doi: 10.1088/1742-6596/1569/4/042030.

I. N. Sinarta and I. W. Ariyana Basoka, “The potential of liquefaction disasters based on the geological, CPT, and borehole data at southern Bali Island,†J. Appl. Eng. Sci., vol. 17, no. 4, pp. 535–540, 2019, doi: 10.5937/jaes17-20794.

A. Ndoj, N. Shkodrani, and V. Hajdari, “Liquefaction-Induced Ground Deformations Evaluation Based on Cone Penetration Tests (CPT),†World J. Eng. Technol., vol. 02, no. 04, pp. 249–259, 2014, doi: 10.4236/wjet.2014.24026.

A. I. Candra, “ANALISIS DAYA DUKUNG PONDASI STROUS PILE PADA PEMBANGUNAN GEDUNG MINI HOSPITAL UNIVERSITAS KADIRI,†Ukarst, vol. 1, no. 1, pp. 63–70, 2017.

I. N. Sinarta, A. Rifa’i, T. F. Fathani, and W. Wilopo, “Spatial Analysis of Safety Factors due to Rain Infiltration in the Buyan-Beratan Ancient Mountains,†Int. Rev. Civ. Eng., vol. 11, no. 2, p. 90, Mar. 2020, doi: 10.15866/irece.v11i2.17668.

I. N. Sinarta and I. W. Ariyana Basoka, “Safety factor analysis of landslides hazard as a result of rain condition infiltration on Buyan-Beratan Ancient Mountain Safety factor analysis of landslides hazard as a result of rain condition infiltration on Buyan-Beratan Ancient Mountain,†J. Phys. Conf. Ser., vol. 1402, no. 2, 2019, doi: 10.1088/1742-6596/1402/2/022002.

Sudarman, H. Manalip, R. S. Windah, and S. O. Dapas, “Analisis Pushover Pada Struktur Gedung Bertingkat,†J. Sipil Statik, vol. 2, no. 4, pp. 201–213, 2014.

SNI 2847-2019, “SNI 03-2847:2019 Persyaratan Beton Struktural Untuk Bangunan Gedung Dan Penjelasan Sebagai Revisi Dari Standar Nasional Indonesia 2847 : 2013,†Badan Standarisasi Nas., no. 8, 2019.

W. Pawirodikromo, Seismologi Teknik & Rekayasa Kegempaan, 1st ed. Yogyakarta: Pustaka Pelajar, 2012.

FEMA 356, “Prestandard And Commentary for The Seismic Rehabilitation of Buildings,†US Fed. Emerg. Manag. Agency, 2000., no. November, pp. 2–15, 2000.

R. K. Rohman, “EVALUASI KINERJA STRUKTUR GEDUNG DIAGNOSTIC CENTER RSUD DR. SUDONO MADIUN DENGAN PUSHOVER ANALYSIS,†Agri-tek, vol. 10, pp. 39–50, 2009.

L. Machach, M. Mouzzoun, O. Moustachi, and A. Taleb, “Assessment of the applicability of pushover analysis for a concrete gravity dam,†Int. Rev. Civ. Eng., vol. 9, no. 5, pp. 181–187, 2018, doi: 10.15866/irece.v9i5.15806.

I. Giongo, M. Piazza, and R. Tomasi, “Pushover analysis of traditional masonry buildings : influence of refurbished timber-floors stiffness,†Int. Conf. Struct. Heal. Assess. Timber Struct., no. June, pp. 1–13, 2011.

Tavio and U. Wijaya, Desain Rekayasa Gempa Berbasis Kinerja (Performance Based Design), Edisi;2. Yogyakarta: Penerbit Andi, 2018.

I. N. Sinarta, A. Rifa’i, T. F. Fathani, and W. Wilopo, “Geotechnical Properties and Geologi Age on Characteristics of Landslides Hazards of Volcanic Soils in Bali , Indonesia,†Int. J. GEOMATE, vol. 11, no. 26, pp. 2595–2599, 2016, doi: 10.21660/2016.26.67987.

I. N. Sinarta, P. Ika Wahyuni, and P. Aryastana, “Debris Flow Hazard Assessment Based on Resistivity Value and Geological Analysis In Abang Mountain, Geopark Batur, Bali,†Int. J. Civ. Eng. Technol., vol. 10, no. 11, pp. 11–18, 2019.

I. N. Sinarta, A. Rifa’i, T. F. Fathani, and W. Wilopo, “Landslide Hazards Due To Rainfall Intensity in the Caldera of Mount Landslide Hazards Due To Rainfall Intensity in,†1st Warmadewa Univ. Int. Conf. Archit. Civ. Eng. Sustain. Des. Cult. 20th Oct. 2017, Fac. Eng. Warmadewa Univ. Bali LANDSLIDE, vol. 1, pp. 160–167, 2017.

SNI and 1727-2013, Beban minimum untuk perancangan bangunan gedung dan struktur lain. 2013.

A. DAUTAJ and N. KABASHI, “Direct Displacement Based Design Based on Priestley and Kowalsky versus Force Based Design for wall structures,†vol. 2, no. 2, pp. 78–82, 2015, doi: 10.15224/978-1-63248-042-2-94.

G. M. Calvi, N. M. J. Priestley, and M. J. Kowalsky, “Displacement Based Seismic Design of Structures - MJN Priestley high resolution.pdf,†5th New Zeal. Soc. Earthq. Eng. Conf., 2008.

I. Muljati, A. Kusuma, and F. Hindarto, “Direct displacement based design on moment resisting frame with out-of-plane offset of frame,†Procedia Eng., vol. 125, pp. 1057–1064, 2015, doi: 10.1016/j.proeng.2015.11.162.

V. A. Segovia and S. E. Ruiz, “Direct Displacement-Based Design for Buildings with Hysteretic Dampers, using Best Combinations of Stiffness and Strength Ratios,†J. Earthq. Eng., vol. 21, no. 5, pp. 752–775, 2017, doi: 10.1080/13632469.2016.1185054.

D. Cardone, M. Dolce, and G. Palermo, “Force-based vs. direct displacement-based design of buildings with seismic isolation,†14th World Conf. Earthq. Eng., vol. 1, 2008.

T. Abhyuday, “Fundamentals of direct displacement based design procedure - A brief introduction,†Disaster Adv., vol. 10, no. 6, pp. 40–43, 2017.

SNI 1726-2019, “Tata Cara Perencanaan Ketahanan Gempa Untuk Struktur Bangunan Gedung dan Non Gedung,†Bandung Badan Stand. Indones., no. 8, p. 254, 2019.

PlumX Metrics

Published

2020-10-31

How to Cite

Sinarta, I. N., & Pinandika, I. M. B. (2020). Comparison of Pushover Method and Direct Displacement Method in Earthquake Load Analysis with Performance-Based Design Concepts. UKaRsT, 4(2), 192–206. https://doi.org/10.30737/ukarst.v4i2.1025

Issue

Section

Articles