Geographically Weighted Regression (GWR) Model of Bandung Regency Food Security during the Covid-19 Pandemic

Authors

  • Muthiah Syakirotin Padjadjaran University
  • Tuti karyani Padjadjaran University
  • Trisna Insan Noor Padjadjaran University

DOI:

https://doi.org/10.30737/agrinika.v7i1.2633

Keywords:

COVID-19 Pandemic, food security, Geographically Weighted Regression

Abstract

The Covid-19 pandemic has had an impact on changes in people's economic activities, leading to an increase in the poverty rate. This has an impact on people's ability to obtain safe and sufficient food. The food security status of the city/district does not always guarantee that each individual is food secure because each region has different characteristics. The diversity of each village has the effect of variance in food security results. This study aims to model the influence of the Covid-19 Pandemic and food security indicators in Bandung Regency using Geographically Weighted Regression (GWR). This research was conducted in Bandung Regency in 280 villages. The design used in this research is descriptive quantitative. The data source used was secondary data on food security in Bandung Regency. The results showed that the influence of the percentage of the population infected with Covid-19 on food security was greatest in the southern area of Bandung Regency, and the value of the Local R2 coefficient of the influence of indicators in the calculation of the food security composite was highest in Nagreg District.

Author Biographies

Muthiah Syakirotin, Padjadjaran University

Economic Agriculture, Faculty of Agriculture

Tuti karyani, Padjadjaran University

Faculty of Agriculture

Trisna Insan Noor, Padjadjaran University

Faculty of Agriculture

References

A’dani, F., Sukayat, Y., Setiawan, I., & Judawinata, M. G. (2021). Pandemi Covid-19: Keterpurukan Dan Kebangkitan Pertanian Strategi Mempertahankan Ketersediaan Pangan Pokok Rumah Tangga Petani Padi Pada Masa Pandemi Covid-19. Mimbar Agribisnis: Jurnal Pemikiran Masyarakat Ilmiah Berwawasan Agribisnis, 7(1), 309–319.

Astuti, W. A., & Musiyam, M. (2009). Kemiskinan dan Perkembangan Wilayah di Kabupaten Boyolali. Forum Geografi, 23(1), 71. https://doi.org/10.23917/forgeo.v23i1.5000

BPS. (2020). Penghitungan dan Analisis Kemiskinan Makro Indonesia Tahun 2020. Penghitungan Dan Analisis Kemiskinan Makro Indonesia Tahun 2019, 300. https://www.bps.go.id/publication/2019/12/20/60138aa2d7b9b78802991240/penghitungan-dan-analisis-kemiskinan-makro-di-indonesia-tahun-2019.html

BPS. (2021). Persentase Penduduk Miskin (Headcount Index/P0). 2021.

Burgui. (2020). Coronavirus: How action against hunger is responding to the pandemic. Www.Actionagainsthunger.Org. https://www.actionagainsthunger.org/story/coronavirus-how-action-against-hunger-responding-pandemic

Candel, J. J. L. (2018). Diagnosing integrated food security strategies. NJAS - Wageningen Journal of Life Sciences, 84(July 2017), 103–113. https://doi.org/10.1016/j.njas.2017.07.001

Caraka, E. ., & Yasin, H. (2017). Geographically Weighted Regression (GWR). Mobius.

Hartati, S., & Zulminiati, Z. (2020). Fakta-Fakta Penerapan Penilaian Otentik di Taman Kanak-Kanak Negeri 2 Padang. Jurnal Obsesi : Jurnal Pendidikan Anak Usia Dini, 5(2), 1035–1044. https://doi.org/10.31004/obsesi.v5i2.521

Hermanto. (2020). Buletin Perencanaan Pembangunan Pertanian. In Dampak Ekonomi Penyebaran Covid-19 Terhadap Kinerja Sektor Pertanian (Vol. 2). http://perencanaan.setjen.pertanian.go.id/public/upload/file/20200415123744BULETIN-EDISI-KHUSUS.pdf

Iqbal, T. (2021). Kabupaten di Jabar Alami Kemiskinan Ekstrem, 480 Ribu Jiwa Terjerat dan Perlu Uluran Tangan. https://www.pikiran-rakyat.com/jawa-barat/pr-012702069/5-kabupaten-di-jabar-alami-kemiskinan-ekstrem-480-ribu-jiwa-terjerat-dan-perlu-uluran-tangan?page=2

Khairad, F. (2020). Sektor Pertanian di Tengah Pandemi COVID-19 ditinjau Dari Aspek Agribisnis. Jounal Agriuma, 2(2), 82–89. http://www.ojs.uma.ac.id/index.php/agriuma/article/view/4357

Mahdy, I. F. (2021). Pemodelan Jumlah Kasus Covid-19 Di Jawa Barat Menggunakan Geographically Weighted Regression. Seminar Nasional Official Statistics, 2020(1), 138–145. https://doi.org/10.34123/semnasoffstat.v2020i1.642

Nugroho, D., Asmanto, P., & Adji, A. (2020). Leading Indicators Kemiskinan Di Indonesia: Penerapan Pada Outlook Jangka Pendek.

Nurpita, A., Wihastuti, L., & Andjani, I. Y. (2018). DAMPAK ALIH FUNGSI LAHAN TERHADAP KETAHANAN PANGAN RUMAH TANGGA TANI DI KECAMATAN TEMON KABUPATEN KULON PROGO. Jurnal Gama Societa, 1(1), 103–110.

Prasada, I. M. Y., & Rosa, T. A. (2018). Dampak alih fungsi lahan sawah terhadap ketahanan pangan di daerah istimewa yogyakarta. Jurnal Sosial Ekonomi Pertanian, 14(3), 210–224.

Pratitis, N., Haryanti, A., Hariyanti, N. A. I., & Kusumawati, E. (2021). Gambaran Stres Tenaga Kesehatan Pada Masa Pandemi Covid-19. Psikologi Konseling, 18(1), 898. https://doi.org/10.24114/konseling.v18i1.27832

Srinita. (2018). Factors affecting the food security and community welfare of farmer households in Sumatera, Indonesia. World Journal of Science, Technology and Sustainable Development. Vol. 15 No. 2, 2018 pp. 200-212

Sutomo, & Shalihati, S. (2015). Kajian Kemiskinan dan Perkembangan Wilayah Kabupaten Purbalingga Dalam Perspektif Geospatial. Geoedukasi, 4(1), 1.

Tarigan, H., Sinaga, J. H., & Rachmawati, R. R. (2020). Dampak pandemi covid-19 terhadap kemiskinan di indonesia. 3, 457–479.

Zubaedi. (2013). Buku Pengembangan Masyarakat (1).pdf (p. 270).

Downloads

PlumX Metrics

Published

29-03-2023

How to Cite

Syakirotin, M., karyani, T., & Noor, T. I. (2023). Geographically Weighted Regression (GWR) Model of Bandung Regency Food Security during the Covid-19 Pandemic. Jurnal Agrinika: Jurnal Agroteknologi Dan Agribisnis, 7(1), 27–35. https://doi.org/10.30737/agrinika.v7i1.2633

Issue

Section

Articles