Analisis Kebutuhan Reagen Kimia Klinik Dan Pengelolaan Safety Stock Menggunakan Time Series Di RSUD Siti Fatimah

Authors

  • Nisrina Ulfah Program Studi Teknik Industri, Fakultas Teknik, Universitas Tridinanti Palembang
  • Winny Andalia Program Studi Teknik Industri, Fakultas Teknik, Universitas Tridinanti Palembang
  • Hermanto MZ Program Studi Teknik Industri, Fakultas Teknik, Universitas Tridinanti Palembang

DOI:

https://doi.org/10.30737/jatiunik.v9i1.6317

Keywords:

Clinical Chemistry Reagents, Time Series Forecasting, Safety Stock

Abstract

Clinical chemistry reagents are important components in supporting the smooth running of medical laboratory examinations. Timely availability of these reagents significantly affects the speed and accuracy of diagnoses. Meanwhile, at Siti Fatimah Hospital, reagent management faces challenges due to fluctuations in demand and delays in procurement, potentially hindering services and leading to patient referrals to external facilities. For this reason, a more accurate planning strategy is needed. One of them is through the application of the Production and Operations Management (POM) principle, which can increase efficiency in managing Safety stock based on historical data. This study aims to develop a forecasting model for the need for Creatinine, blood urea, and alkaline phosphatase reagents. Then, design an optimal Safety stock plan to anticipate demand uncertainty.This study uses a quantitative descriptive method. Data were collected through observation, interviews, and documentation. Data were processed using QM for Windows software to obtain time series forecasting results and Safety stock calculations. The results of the analysis showed that the linear trend method was the best forecasting method for the need for Creatinine and blood urea reagents. For alkaline phosphatase, the best method is Exponential Smoothing With Trend. Then, in the calculation of Safety stock, the assumption of a service level of 95% produces reserves of 99.56 mL for Creatinine, 87.85 mL for blood urea, and 3.80 mL for alkaline phosphatase. This method proves effective in ensuring optimal reagent availability and minimizing stockout risks.

References

[1] Y. Lin, C. Wan, S. Li, S. Xie, Y. Gan, and Y. H. Lu, “Prediction of women and Children’s hospital outpatient numbers based on the autoregressive integrated moving average model,” Heliyon, vol. 9, no. 4, p. e14845, 2023, doi: 10.1016/j.heliyon.2023.e14845.

[2] K. Shah, A. Sharma, C. Moulton, S. Swift, C. Mann, and S. Jones, “Forecasting the Requirement for Nonelective Hospital Beds in the National Health Service of the United Kingdom: Model Development Study,” JMIR Med. Informatics, vol. 9, no. 9, 2021, doi: 10.2196/21990.

[3] M. Yazdani, S. Shahriari, and M. Haghani, “Real-time decision support model for logistics of emergency patient transfers from hospitals via an integrated optimisation and machine learning approach,” Prog. Disaster Sci., vol. 25, no. December 2024, p. 100397, 2025, doi: 10.1016/j.pdisas.2024.100397.

[4] R. Badi’Ah et al., “The Use of Statistical Process Control in Total Quality Management: A Bibliometric Analysis of Publication Performance and Trends,” Rev. Appl. Socio-Economic Res., vol. 29, no. 1, pp. 149–163, 2025, doi: 10.54609/reaser.v29i1.510.

[5] Nisa Ayunda, Faizah, and Sujarwo, “Analisa Peramalan Data Time-Series Dengan Aplikasi Windows POM-QM,” Buana Mat. J. Ilm. Mat. dan Pendidik. Mat., vol. 11, no. 2, pp. 167–180, 2021, doi: 10.36456/buanamatematika.v11i2.5913.

[6] S. Ren, C. Liang, Y. Liu, J. Wang, and C. Wang, “Evolutionary game-based warehousing resources sharing strategy for logistics industry under product-service system paradigm,” Adv. Eng. Informatics, vol. 67, no. May, p. 103560, 2025, doi: 10.1016/j.aei.2025.103560.

[7] W. Wahyudi, “Analisis Motivasi Belajar Siswa Dengan Menggunakan Model Pembelajaran Blended Learning Saat Pandemi Covid-19 (Deskriptif Kuantitatif Di Sman 1 Babadan Ponorogo),” KadikmA, vol. 13, no. 1, p. 68, 2022, doi: 10.19184/kdma.v13i1.31327.

[8] A. D. P. Citraresmi and F. Azizah, “Inventory control of raw material on sweet bread production,” IOP Conf. Ser. Earth Environ. Sci., vol. 230, no. 1, 2019, doi: 10.1088/1755-1315/230/1/012056.

[9] A. H. Nobil, A. H. A. Sedigh, and L. E. Cárdenas-Barrón, “Reorder point for the EOQ inventory model with imperfect quality items,” Ain Shams Eng. J., vol. 11, no. 4, pp. 1339–1343, 2020, doi: 10.1016/j.asej.2020.03.004.

[10] A. Aries, H. Prabowo, T. Sriwidadi, and R. B. Ikhsan, “Penerapan Forecasting pada Kebutuhan Bahan Baku ‘Solven S 602,’” J. Manaj. Transp. Logistik, vol. 6, no. 1, p. 93, 2019, doi: 10.54324/j.mtl.v6i1.303.

[11] A. Lusiana and P. Yuliarty, “PENERAPAN METODE PERAMALAN (FORECASTING) PADA PERMINTAAN ATAP di PT X,” Ind. Inov. J. Tek. Ind., vol. 10, no. 1, pp. 11–20, 2020, doi: 10.36040/industri.v10i1.2530.

[12] K. Berendes, A. Arabmaldar, M. Hammerschmidt, D. Loske, and M. Klumpp, “Measuring the resilience-efficiency trade-off: an empirical application for retail logistics,” Logist. Res., no. September, 2025, doi: 10.1108/LORE-12-2024-0016.

[13] M. S. Alam, M. Murshed, P. Manigandan, D. Pachiyappan, and S. Z. Abduvaxitovna, “Forecasting oil, coal, and natural gas prices in the pre-and post-COVID scenarios: Contextual evidence from India using time series forecasting tools,” Resour. Policy, vol. 81, no. September 2022, p. 103342, 2023, doi: 10.1016/j.resourpol.2023.103342.

[14] M. K. Mollah and A. D. Saputra, “Penerapan Peramalan Penjualan Menggunakan Aplikasi POM QM pada produk Gula di PT. Pabrik Gula Candi Baru Sidoarjo,” Semin. Nas. Teknol. Ind. Berkelanjutan II (SENASTITAN II), pp. 449–458, 2022.

[15] M. W. Rini and N. Ananda, “Perbandingan Metode Peramalan Menggunakan Model Time Series,” Tekinfo J. Ilm. Tek. Ind. dan Inf., vol. 10, no. 2, pp. 88–101, 2022, doi: 10.31001/tekinfo.v10i2.1419.

[16] Tetin Adawiah, Suci Putri Lestari, and Kusuma Agdhi Rahwana, “ANALISIS PERAMALAN JUMLAH PRODUKSI HIJAB MENGGUNAKAN METODE FORECASTING (Studi Kasus Pada Aliya Hijab Collection Kabupaten Tasikmalaya),” J. Ekon. Manaj. Pariwisata dan Perhotelan, vol. 1, no. 3, pp. 303–313, 2022, doi: 10.55606/jempper.v1i3.609.

[17] N. Mukaromah, “Analisis Forecasting (Peramalan) Permintaan Karet Pada Pt Perkebunan Nusantara XII Banjarsari Jember,” 2019.

[18] W. Andalia and R. A. N. Moulita, “Peramalan Jumlah Persediaan Komoditas di PT Pelabuhan Indonesia II Cabang Palembang Menggunakan Metode Moving Average dan Exponential Smoothing Commodity Inventory Forecasting in PT Pelabuhan Indonesia II Palembang Branch using Moving Average and Exponent,” J. Tek. dan Sist. Ind., vol. 01, no. 1, pp. 19–26, 2023.

[19] A. Laura, E. f. Tambunan. Bakhtiar, “Pengendalian Persediaan Bahan Kimia Hidrogen Peroxide ( H 2 O 2 ) Dengan Penentuan Safety Stock Dan Reorder Point Pada Pt Toba,” J. Ind., vol. 1, no. 3, pp. 1–7, 2020.

[20] S. Sudiman, “Peramalan Untuk Perencanaan Produksi Stop Valve Tipe Tx277S Menggunakan Metode Peramalan Deret Waktu (Time Series) Di Pt. Xyz,” JITMI (Jurnal Ilm. Tek. dan Manaj. Ind., vol. 3, no. 1, p. 7, 2020, doi: 10.32493/jitmi.v3i1.y2020.p7-14.

[21] L. C. Wood, C. Wang, H. Abdul-Rahman, and N. S. Jamal Abdul-Nasir, “Green hospital design: Integrating quality function deployment and end-user demands,” J. Clean. Prod., vol. 112, pp. 903–913, 2016, doi: 10.1016/j.jclepro.2015.08.101.

[22] M. K. Adeyeri, S. P. Ayodeji, and A. O. Orisawayi, “Development of a dual - purpose wheelchair for COVID-19 paraplegic patients using nigerian anthropometry data,” Sci. African, vol. 9, 2020, doi: 10.1016/j.sciaf.2020.e00547.

[23] C. H. Glock and J. M. Ries, “Reducing lead time risk through multiple sourcing: The case of stochastic demand and variable lead time,” Int. J. Prod. Res., vol. 51, no. 1, pp. 43–56, 2013, doi: 10.1080/00207543.2011.644817.

[24] S. Thevenin, O. Ben-Ammar, and N. Brahimi, “Robust optimization approaches for purchase planning with supplier selection under lead time uncertainty,” Eur. J. Oper. Res., vol. 303, no. 3, pp. 1199–1215, 2022, doi: 10.1016/j.ejor.2022.03.029.

[25] V. Ryanka Sutrisno, “Analisis Forecasting untuk Data Penjualan Menggunakan Metode Simple Moving Average dan Single Exponential Smoothing: Studi Kasus PT Guna Kemas Indah,” 2013.

[26] N. Kristanti and M. Y. Darsyah, “Perbandingan Peramalan Metode Single Exponential Smoothing dan Double Exsponential Smoothing pada Karakteristik Penduduk Bekerja di Indonesia Tahun 2017,” Pros. Semin. Nas. Mhs. Unimus, vol. 1, no. 1, pp. 368–374, 2018, [Online]. Available: http://prosiding.unimus.ac.id/index.php/mahasiswa/article/view/172

Downloads

Published

2025-10-08

Issue

Section

Articles

Deprecated: json_decode(): Passing null to parameter #1 ($json) of type string is deprecated in /home/ojs.unik-kediri.ac.id/public_html/plugins/generic/citations/CitationsPlugin.php on line 68

How to Cite

Analisis Kebutuhan Reagen Kimia Klinik Dan Pengelolaan Safety Stock Menggunakan Time Series Di RSUD Siti Fatimah. (2025). JATI UNIK : Jurnal Ilmiah Teknik Dan Manajemen Industri, 9(1), 62-74. https://doi.org/10.30737/jatiunik.v9i1.6317

Similar Articles

21-30 of 36

You may also start an advanced similarity search for this article.