Pelindung Dinding Terhadap Hujan Asam Menggunakan Geopolimer Berbasis Nanosilika dan Cellulose Nanocrystals

Authors

  • Cut Rahmawati Program Studi Teknik Sipil, Fakultas Teknik, Universitas Abulyatama, Aceh Besar, Indonesia

DOI:

https://doi.org/10.30737/jurmateks.v6i1.4625

Keywords:

Acid Rain, Cellulose Nanocrystals, Durability, Geopolimer, Nano-silica

Abstract

Geopolymers have a weakness in durability against exposure to acid rain. Nano-silica and Cellulose Nanocrystals (CNCs) can be incorporated to enhance the acid rain resistance of geopolymers. This study aims to investigate the durability of geopolymer-based nano-silica and CNCs against exposure to acid rain. This study employed a rain simulation infiltration method. The concentrations of nano-silica and CNCs used were 4% and 1%, respectively. The compressive strength of the geopolymer specimens was tested before and after exposure to assess the effects of acid rain. Additionally, SEM and XRD tests were conducted to analyze microstructural changes. The results revealed a significant reduction in the compressive strength of the geopolymer without nano silica and CNCs (36.14% and 26.73% at pH 4 and 5, respectively). In contrast, the geopolymer paste containing nano-silica and CNCs exhibited lower reductions of 22.93% and 19.77% at pH 4 and 5, respectively. These findings indicate that the addition of nano-silica and CNCs contributes to the preservation of compressive strength. The observed effect is attributed to the ability of nano-silica and CNCs to impede acid attack on the geopolymer paste, thereby preventing the degradation of calcium levels present in the fly ash within the geopolymer. The strength degradation of the geopolymer paste resulted from the breakdown of Al–O, Si–O, and calcium bonds within the system, triggered by the reaction with H2SO4 from the acid rain. Nano-silica and CNCs-based geopolymers exhibit positive effects and can be utilized as a coating on the walls of buildings.

References

H. K. Tchakouté, C. H. Rüscher, S. Kong, and N. Ranjbar, “Synthesis of sodium waterglass from white rice husk ash as an activator to produce metakaolin-based geopolymer cements,” J. Build. Eng., vol. 6, pp. 252–261, Jun. 2016, doi: 10.1016/j.jobe.2016.04.007.

J. Davidovits, “Geopolymers: inorganic polymericnew materials,” J. Therm. Anal., vol. 37, no. 9, pp. 1633–1656, 1991, doi: 10.1017/CBO9781107415324.004.

P. Abhilash, C. Sashidhar, and I. V. R. Reddy, “Evaluation of performance of Geopolymer Concrete in acid environment,” Int. Res. J. Eng. Technol., vol. 4, no. 7, pp. 1433–1438, 2017.

Y. Patrisia, D. W. Law, C. Gunasekara, and A. Wardhono, “Fly ash geopolymer concrete durability to sulphate, acid and peat attack,” in MATEC Web of Conferences, 2022, p. 02003, doi: https://doi.org/10.1051/matecconf/202236402003.

L. B. de Oliveira, A. R. G. de Azevedo, M. T. Marvila, E. C. Pereira, R. Fediuk, and C. M. F. Vieira, “Durability of geopolymers with industrial waste,” Case Stud. Constr. Mater., vol. 16, p. e00839, 2022, doi: https://doi.org/10.1016/j.cscm.2021.e00839.

H. E. Elyamany, A. E. M. A. Elmoaty, and A. M. Elshaboury, “Magnesium sulfate resistance of geopolymer mortar,” Constr. Build. Mater., vol. 184, pp. 111–127, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.06.212.

F. H. A. Zaidi et al., “Geopolymer as underwater concreting material: A review,” Constr. Build. Mater., vol. 291, p. 123276, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.123276 Get rights and content.

K. Chen, D. Wu, L. Xia, Q. Cai, and Z. Zhang, “Geopolymer concrete durability subjected to aggressive environments – A review of influence factors and comparison with ordinary Portland cement,” Constr. Build. Mater., vol. 279, p. 122496, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.122496.

C. Liu et al., “Effect of nano-silica as cementitious materials-reducing admixtures on the workability, mechanical properties and durability of concrete,” Nanotechnol. Rev., vol. 10, no. 1, 2021, doi: https://doi.org/10.1515/ntrev-2021-0097.

P. Jaishankar, K. T. Poovizhi, and K. S. R. Mohan, “Strength and Durability Behaviour of Nano Silica on High Performance Concrete,” Int. J. Eng. Technol., vol. 7, pp. 415–418, 2018.

D. Adak, M. Sarkar, and S. Mandal, “Effect of nano-silica on strength and durability of fly ash based geopolymer mortar,” Constr. Build. Mater., vol. 70, pp. 453–459, 2014, doi: https://doi.org/10.1016/j.conbuildmat.2014.07.093.

L. Handayani, S. Aprilia, C. Rahmawati, T. B. Aulia, and P. Ludviq, “Sodium Silicate from Rice Husk Ash and Their Effects as Geopolymer Cement,” Polymers (Basel)., vol. 14, no. 14, p. 2920, 2022.

M. Meliyana, C. Rahmawati, and L. Handayani, “Sintesis Nano Silika dari Abu Sekam Padi Dengan Metode Sol-Gel,” in Seminar Nasional Multi Disiplin Ilmu Universitas Asahan ke-3, 2019, pp. 800–807.

M. Meliyana, C. Rahmawati, and L. Handayani, “Sintesis Silika Dari Abu Sekam Padi Dan Pengaruhnya Terhadap Karakteristik Bata Ringan,” Elkawnie, vol. 5, no. 2, pp. 164–175, 2019.

C. Rahmawati, S. Aprilia, T. Saidi, and T. B. Aulia, “Current development of geopolymer cement with nanosilica and cellulose nanocrystals,” in Journal of Physics: Conference Series, 2021, pp. 1–8, doi: 10.1088/1742-6596/1783/1/012056.

J. Ahmad, A. Majdi, A. F. Deifalla, H. F. Isleem, and C. Rahmawati, “Concrete Made with Partially Substitutions of Copper Slag (CPS): State of the Art Review,” Materials (Basel)., vol. 15, no. 15, pp. 1–28, 2022, doi: https://doi.org/10.3390/ma15155196.

C. Rahmawati et al., “Mechanical Properties and Fracture Parameters of Geopolymers based on Cellulose Nanocrystals from Typha sp. Fibers,” Case Stud. Constr. Mater., p. e01498, 2022, doi: https://doi.org/10.1016/j.cscm.2022.e01498.

J. Ahmad, M. M. Arbili, A. Majdi, F. Althoey, A. F. Deifalla, and C. Rahmawati, “Performance of concrete reinforced with jute fibers (natural fibers): A review,” J. Eng. Fiber. Fabr., pp. 1–17, 2022, doi: https://doi.org/10.1177/15589250221121871.

C. Rahmawati, S. Aprilia, T. Saidi, T. B. Aulia, and I. Ahmad, “Preparation and characterization of cellulose nanocrystals from typha sp. as a reinforcing agent,” J. Nat. fibers, vol. 18, pp. 1–14, 2021, doi: https://doi.org/10.1080/15440478.2021.1904486.

N. D. Rusli, A. A. A. Ghani, K. Mat, M. T. Yusof, M. Zamri Saad, and H. A. Hassim, “The Potential of Pretreated Oil Palm Frond in Enhancing Rumen Degradability and Growth Performance: A Review,” Adv. Anim. Vet. Sci., vol. 9, no. 6, pp. 811–822, 2021.

D. Ren, C. Yan, P. Duan, Z. Zhang, L. Li, and Z. Yan, “Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack,” Constr. Build. Mater., vol. 134, pp. 56–66, 2017, doi: https://doi.org/10.1016/j.conbuildmat.2016.12.103.

N. Ganesan, R. Abraham, and S. D. Raj, “Durability characteristics of steel fibre reinforced geopolymer concrete,” Constr. Build. Mater., vol. 93, pp. 471–476, 2015, doi: https://doi.org/10.1016/j.conbuildmat.2015.06.014.

G. Laxmi, S. Patil, N. Hossiney, and H. K. Thejas, “Effect of hooked end steel fibers on strength and durability properties of ambient cured geopolymer concrete,” Case Stud. Constr. Mater., vol. 18, p. e02122, 2023.

S. Y. Rani, M. S. Nusari, J. bin Non, S. Poddar, and A. Bhaumik, “Durability of geopolymer concrete with addition of polypropylene fibre,” in Materials Today: Proceedings, 2022, pp. 2846–2851, doi: https://doi.org/10.1016/j.matpr.2021.10.164.

C. Rahmawati, S. Aprilia, T. Saidi, T. B. Aulia, and A. E. Hadi, “The Effects of Nanosilica on Mechanical Properties and Fracture Toughness of Geopolymer Cement,” Polymers (Basel)., vol. 13, no. 13, p. 2178, 2021, doi: https://doi.org/10.3390/polym13132178.

M. Jin, Z. Zheng, Y. Sun, L. Chen, and Z. Jin, “Resistance of metakaolin-MSWI fly ash based geopolymer to acid and alkaline environments,” J. Non. Cryst. Solids, vol. 450, pp. 116–122, 2016, doi: https://doi.org/10.1016/j.jnoncrysol.2016.07.036.

ASTM C 109. Standart test method for compressive strength of hydrulic 557 cement mortar (using 2-in or 50 mm cube specimens. In: Annual Book of 558 ASTM Standars, 2001.

S. Han, J. Zhong, Q. Yu, L. Yan, and J. Ou, “Sulfate resistance of eco-friendly and sulfate-resistant concrete using seawater sea-sand and high-ferrite Portland cement,” Constr. Build. Mater., vol. 305, no. April, p. 124753, 2021, doi: 10.1016/j.conbuildmat.2021.124753.

A. Mehta and R. Siddique, “Sulfuric acid resistance of fly ash based geopolymer concrete,” Constr. Build. Mater., vol. 146, pp. 136–143, Aug. 2017, doi: 10.1016/J.CONBUILDMAT.2017.04.077.

B. N. Sangeetha, “Effect of Rice Husk Ash and GGBS on Performance of Concrete,” Int. J. Eng. Res. Technol., vol. 4, no. 2, pp. 491–495, 2015.

M. Amran et al., “Long-term durability properties of geopolymer concrete: An in-depth review,” Case Stud. Constr. Mater., vol. 15, no. July, p. e00661, 2021, doi: 10.1016/j.cscm.2021.e00661.

F. Slaty, H. Khoury, H. Rahier, and J. Wastiels, “Durability of alkali activated cement produced from kaolinitic clay,” Appl. Clay Sci., vol. 104, pp. 229–237, 2015, doi: 10.1016/j.clay.2014.11.037.

C. Rahmawati, S. Aprilia, T. Saidi, and T. B. Aulia, “Mineralogical, Microstructural and Compressive Strength Characterization of Fly Ash as Materials in Geopolymer Cement,” Elkawnie, vol. 7, no. 1, pp. 1–17, 2021.

Downloads

PlumX Metrics

Published

2023-06-30

Issue

Section

Articles