Karakterisasi Mortar Geopolimer terhadap Penambahan Kapur Berbasis Abu Terbang dan ASP dengan NaOH 10 Molar

Authors

  • Maria Enjelina Sibuea Universitas Negeri Surabaya
  • A. Wardhono Universitas Negeri Surabaya

DOI:

https://doi.org/10.30737/jurmateks.v8i1.6593

Keywords:

Compressive Strength, Geopolymer, Lime, Porosity, Rice Husk Ash

Abstract

Cement which is the main material for making concrete has a negative impact on environmental, namely producing carbon emissions. One alternative to overcome this, is the use of fly ash and rice husk ash as a cement substitute. The addition of lime, which is a form of CaO, functions to increase the reactive properties of class C fly ash. The concrete curing process is carried out at room temperature, because the properties of lime itself speed up the hardening process. This research aims to determine the best ratio for adding lime in terms of compressive strength, porosity and setting time. Lime was added with several variations, namely 1%, 2.5%, 5%, 7.5%, and 0% as a control. The results of this research on the addition of lime to geopolymer mortar are reducing the compressive strength value, increase porosity, and extends setting time. Mortar with 7.5% lime compared to 1% lime, has lower compressive strength (1.12 MPa: 7.70 MPa), higher porosity (32.91%: 18.72%), and longer setting time (270 minute: 240 minute). However, if mortar with 1% lime compared to normal gepolymer without lime, has better results. Higher compressive strength (7.70 MPa: 5.63 MPa), lower porosity (18.72%: 22.93%), and fast setting time (240 minute: 495 minute). So the results of this research, a slight change in the lime portion can make a significant difference, excessive additions will disrupt the geopolymer reaction.

References

[1] E. Suprapto, M. A. C. P. Purnama, and T. B. Santoso, “Evaluasi Kinerja Perkuatan Gedung Menggunakan Carbon Fiber Reinforced Polymer (CRFP),” J. Rekayasa Infrastruktur Hexag., vol. 7, no. 2, 2022.

[2] K. P. U. dan P. Rakyat, “Informasi Statistik Infrastruktur PUPR 2022,” vol. 11, no. 1, pp. 1–14, 2022.

[3] A. Permata, Estika Fitrianda Intan Permata; Wardhono, “Pengaruh Kepekatan Larutan Aktivator terhadap Kuat Tekan Geopolymer Mortar Berbahan Dasar Abu Terbang dan NaOH 12 Molar pada Kondisi Ss/Sh 2.0 Dan 4.0”.

[4] M. Rathnayaka, D. Karunasingha, C. Gunasekara, D. W. Law, K. Wijesundara, and W. Lokuge, “Mix design determination procedure for geopolymer concrete based on target strength method,” Arch. Civ. Mech. Eng., vol. 24, no. 3, pp. 1–25, 2024, doi: 10.1007/s43452-024-01002-8.

[5] J. Davidovits, “Properties of Geopolymer Cements,” First Int. Conf. Alkaline Cem. Concr., pp. 131–149, 1994.

[6] A. Wardhono, D. W. Law, M. F. Sofianto, and M. Wulandari, “Strength performance of fly ash and rice husk ash geopolymer as sustainable infrastructure green materials in supporting SDG 9 and SDG 13,” E3S Web Conf., vol. 568, 2024, doi: 10.1051/e3sconf/202456802003.

[7] A. Wardhono, “Comparison Study of Class F and Class C Fly Ashes as Cement Replacement Material on Strength Development of Non-Cement Mortar,” IOP Conf. Ser. Mater. Sci. Eng., vol. 288, no. 1, 2018, doi: 10.1088/1757-899X/288/1/012019.

[8] R. N. Luntungan, M. D. J. Sumajouw, and R. E. Pandaleke, “Optimalisasi Kuat Tekan Beton Geopolymer dengan Menambahkan Semen atau Kapur pada Perawatan Temperatur Ruangan,” J. Sipil Statik, vol. 7, no. 7, pp. 749–756, 2019.

[9] I. Özkul, A. Gültekin, and K. Ramyar, “Effect of cement and lime on strength and high-temperature resistance of class F and C fly ash-based geopolymer mortars,” J. Sustain. Constr. Mater. Technol., vol. 7, no. 2, pp. 62–69, 2022, doi: 10.47481/jscmt.1120446.

[10] I. Sulianti, I. -, A. Subrianto, E. Rahmadona, O. Yanti, and A. W. Iryani, “Analisis Kuat Beton Geopolimer Menggunakan Fly Ash dan Abu Sekam Padi,” Bentang J. Teor. dan Terap. Bid. Rekayasa Sipil, vol. 9, no. 2, pp. 63–70, 2021, doi: 10.33558/bentang.v9i2.2859.

[11] A. Özodabaş, “Zwiększenie wytrzymałości bezcementowych zapraw aktywowanych alkalicznie , poprzez dodanie wapna i pokruszonej cegły Increasing the strength of alkali activated mortars prepared without cement by adding lime and crushed brick,” Cem. Wapno Bet., vol. 29, no. 3, pp. 233–248, 2024.

[12] S. Fernando et al., “Long-Term Mechanical Properties of Blended Fly Ash-Rice Husk Ash Alkali-Activated Concrete,” ACI Mater. J., vol. 119, no. 5, pp. 175–188, 2022, doi: 10.14359/51735954.

[13] A. R. Villca, L. Soriano, M. V. Borrachero, J. Payá, J. M. Monzó, and M. M. Tashima, “Hybrid Lime–Pozzolan Geopolymer Systems: Microstructural, Mechanical and Durability Studies,” Materials (Basel)., vol. 15, no. 8, 2022, doi: 10.3390/ma15082736.

[14] S. Zuraidah and B. Hastono, “Serbuk Kapur Sebagai Cementitious Pada Mortar,” J. Rekayasa Tenik Sipil Univ. Madura, vol. 2, no. 1, pp. 27–31, 2017.

[15] A. A. Adam, N. H. Amiri, I. W. Suarnita, and N. Rupang, “The effect of lime addition on the setting time and strength of ambient cured fly ash based geopolymer binder,” MATEC Web Conf., vol. 47, pp. 1–5, 2016, doi: 10.1051/matecconf/20164701015.

[16] E. Riyanto, E. Widyananto, and R. R. Renaldy, “Analisis Kuat Tekan Mortar Geopolimer Berbahan Silica Fume dan Kapur Tohor,” INERSIA lNformasi dan Ekspose Has. Ris. Tek. SIpil dan Arsit., vol. 17, no. 1, pp. 19–26, 2021, doi: 10.21831/inersia.v17i1.35901.

[17] A. Shahab, A. O. Irlan, and A. Nugroho, “Kuat Tekan dan Porositas Beton Berpori dengan,” J. Forum Mek., vol. 9, no. 2, pp. 82–89, 2020.

[18] A. Wardhono, “The effect of seashell waste on setting and strength properties of class c fly ash geopolymer concrete cured at ambient temperature,” J. Eng. Sci. Technol., vol. 14, no. 3, pp. 1220–1230, 2019.

[19] A. Wardhono, “PhD - The Durability of Fly Ash Geopolymer and Alkali-Activated Slag Concretes,” RMIT, Melb., no. January, p. 326, 2015.

[20] E. Maryenttry, F. Firdaus, and W. Y. Prawira, “Pengaruh Penambahan Kapur Pada Semen Geopolimer Terhadap Mortar Geopolimer,” Rang Tek. J., vol. 7, no. 1, pp. 127–131, 2024.

[21] A. A. Adam, L. Deviana, A. P. N. Siregar, and Mustofa, “Water absorption of ambient-cured geopolymer concrete,” IOP Conf. Ser. Earth Environ. Sci., vol. 1157, no. 1, 2023, doi: 10.1088/1755-1315/1157/1/012025.

[22] Ardiansyah, Risnita, and M. S. Jailani, “Teknik Pengumpulan Data Dan Instrumen Penelitian Ilmiah Pendidikan Pada Pendekatan Kualitatif dan Kuantitatif,” J. IHSAN J. Pendidik. Islam, vol. 1, no. 2, pp. 1–9, 2023, doi: 10.61104/ihsan.v1i2.57.

[23] R. B. Kogbara, A. Al-Zubi, Y. Mortada, A. Hammoud, E. A. Masad, and M. K. Khraisheh, “Lime-activated one-part geopolymer mortars from construction, demolition and industrial wastes,” Results Eng., vol. 21, no. September 2023, p. 101739, 2024, doi: 10.1016/j.rineng.2023.101739.

[24] A. A. Adam, S. N. Akifa, A. P. N. Siregar, and Mustofa, “Effect of Method and Duration of Curing on the Compressive Strength of the Lime-Fly Ash Geopolymer Concrete,” J. Phys. Conf. Ser., vol. 1594, no. 1, 2020, doi: 10.1088/1742-6596/1594/1/012030.

[25] D. F. Setiawan and A. Wardhono, “Penggunan Abu Sekam Padi Sebagai Bahan Subtitusi Fly Ash Pada Mortar Geopolimer Dengan NaOH 8 Molar Ditinaju Dari Kuat Tekan dan Porositas,” pp. 1–8, 2011.

Downloads

Published

2025-09-25

Issue

Section

Articles

How to Cite

Karakterisasi Mortar Geopolimer terhadap Penambahan Kapur Berbasis Abu Terbang dan ASP dengan NaOH 10 Molar. (2025). Jurnal Manajemen Teknologi & Teknik Sipil, 8(1), 48-62. https://doi.org/10.30737/jurmateks.v8i1.6593

Similar Articles

11-20 of 64

You may also start an advanced similarity search for this article.